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Introduction

The global energy system is undergoing a qualitative 
restructuring in which two powerful, at times conflicting 
impulses intersect: the accelerated build-up of electricity 
demand and the requirement for deep decarbonization as a 
key instrument for countering climate risks. The indicators 
for 2024 demonstrate the scale of the challenge: aggregate 
global energy consumption increased by 2.2%, outpacing 
the average growth rates of the previous decade [1]. The 
balance has shifted particularly sharply in the power sector: 
electricity demand grew by 4.3%—almost twice as fast as 
global GDP growth [2]. This trajectory is explained by the 
cumulative effect of widespread electrification of transport 
and heat supply, the intensification of energy use in industry, 
and the rapid growth of loads created by data centers and 
artificial intelligence systems; extreme weather conditions 
that drove record cooling demand also contributed [36, 37].

Against this backdrop, the deployment of low-carbon 
technologies has accelerated. In 2024 renewables accounted 
for 38% of the increase in global energy consumption, and 
the combined share of clean generation (renewables plus 

nuclear power) reached 40% of global electricity production 
for the first time [2]. Nevertheless, the expansion of 
renewables still lags behind the pace of demand growth, and 
the resulting gap is being filled by fossil fuels. As a result, a 
paradoxical situation is taking shape: despite record capital 
expenditures on the development of green energy—USD 2.1 
trillion in 2024—global CO₂ emissions continue to rise [2].

The energy transition is thus entering a more complex 
phase — its honeymoon period is effectively ending. Annual 
investment growth has slowed from 24–29% previously 
to 11% in 2024 [6]. This is not about lowering targets but 
about encountering systemic limits: rising project costs, 
increasing technological complexity, and the emergence of 
physical bottlenecks [7]. The shortages are most acute in 
the supply chains of critical power equipment; for example, 
delivery times for power transformers have lengthened 
from 50 weeks in 2021 to 120–210 weeks in 2024 [9]. 
Consequently, the primary constraint on scaling renewables 
is not generation per se, but the throughput and readiness 
of grid infrastructure. Under these conditions, the emphasis 
must shift from merely adding capacity to the intelligent 
optimization of the entire energy system; this is why the 
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SAEO concept becomes not just important but critical for the 
successful implementation of the energy transition.

The academic corpus of existing research is saturated with 
works on energy system optimization. A wide spectrum of 
algorithms has been proposed — from classical analytical 
and stochastic schemes to sophisticated metaheuristics, 
including genetic algorithms (GA) and particle swarm 
optimization (PSO) [10]. However, a considerable share 
of this body of work addresses theoretical, static problem 
statements under idealizing assumptions. As a result, a gap 
persists between formal modeling and the construction of 
integrated, scalable, and secure frameworks suitable for 
operation in real, dynamically changing, and potentially 
adversarial cyber-physical environments [11].

Traditional optimization approaches generally do not 
provide the required adaptability for real-time control, 
especially under the high stochasticity characteristic of RES-
based generation and modern consumption profiles [12]. 
In contrast, AI-oriented methods, despite demonstrated 
effectiveness, often operate as black boxes. Their deployment 
in critical infrastructure entails risks of unpredictable 
behavior and enlarges the attack surface, including false 
data injection attacks (FDIA) capable of poisoning model 
training [13]. Thus, the research gap lies in the absence of an 
integrated methodology that unifies three key aspects:

-intelligent control: Timely optimal decision-making under 
uncertainty;

-high-precision modeling: The availability of a validated 
digital (virtual) environment for safe testing and deployment 
of control algorithms;

-guaranteed security: Built-in mechanisms to counter cyber-
physical threats targeting both the physical infrastructure 
and the control intelligence.

The goal is to systematize the interdisciplinary 
methodological foundations of SAEO and to propose an 
integrated conceptual framework for the design, deployment, 
and evaluation of such systems.

The scientific novelty lies in the formalization of a holistic 
SAEO architecture that synergistically integrates deep 
reinforcement learning agents (DRL) for adaptive action 
selection, digital twins (DT) as the operational simulation 
environment, and a multilayer cybersecurity paradigm as a 
necessary condition for resilience.

The author’s hypothesis is based on the premise that 
achieving reliable, scalable, and secure autonomous 
optimization of energy consumption is determined not 
by perfecting any single technology but by the systemic 
integration of DRL, DT, and cybersecurity. Such synergy 
is the most realistic path to bridging the gap between 
theoretical constructs and practically viable, fault-tolerant 
SAEO systems.

Chapter 1. Technological and theoretical 
basis of SAEO

Fundamental Principles of System Optimization in 
the Energy Sector

At the core of any SAEO system lies a multiobjective 
optimization formulation aimed at finding a rigorously 
justified compromise among competing technical and 
economic performance indicators. Formally, the problem 
reduces to selecting a control strategy from an admissible 
set defined by hard constraints, while ensuring optimality 
in the sense of the chosen criterion approach (a vector 
criterion or its scalarization), that is, to the minimization 
or maximization of the corresponding objective function 
subject to all constraints.

The first priority is the minimization of total costs, typically 
through reducing the net present cost (NPC), the levelized 
cost of energy (LCOE), and/or operating expenditures 
(OPEX), including the fuel component and maintenance costs 
[16]. This approach ensures intertemporal comparability 
of alternatives and allows accounting for both capital and 
operational effects.

The second priority is the minimization of greenhouse 
gas emissions, that is, the deliberate reduction of the 
energy system’s carbon footprint measured in tonnes of 
CO₂ equivalent. This criterion integrates environmental 
requirements into the optimization procedure and serves as 
a tool for aligning energy and climate objectives [17].

The third priority is the maximization of reliability, 
understood as ensuring continuity of energy supply given 
the demand structure and resource constraints. In practice, 
this is expressed either by minimizing the Loss of Power 
Supply Probability (LPSP) or by maximizing the integral 
reliability index (Reliability, REL), which makes it possible 
to quantitatively rank solutions by their resilience to failures 
and variability of operating regimes [10].

Optimization of operating modes and dispatch control of 
the power system are carried out under strict system-level 
constraints determined by both fundamental physical laws 
and operational regulations. At every moment it is necessary 
to ensure the balance of active power: the aggregate 
generation output must strictly match the total demand 
with account for network losses. It is no less important to 
maintain power quality indicators — voltage and frequency 
— within standardized ranges that guarantee stability and 
safe operation of equipment. Additionally, operational 
limits of infrastructure elements — generators, storage 
units, and network devices — must be observed: ranges of 
minimum and maximum active/reactive power, permissible 
ramp-up and ramp-down rates, and for battery systems 
— requirements for state of charge (SoC) and associated 
technological constraints [10, 31].
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Historically, analytical and probabilistic approaches, as well 
as metaheuristics (for example, particle swarm optimization, 
PSO, and genetic algorithms, GA) [10], have been used to 
solve such problems. However, in high-dimensional, dynamic, 
and stochastic formulations characteristic of modern power 
systems, their effectiveness decreases substantially: the 
search for quasi-global extrema leads to a rapid growth of 
computational costs, high sensitivity to disturbances makes 
the obtained solutions unstable, and the transferability of 
tuning across operating modes remains limited. As a result, 
the listed methods prove to be of little use for real-time 
operational control, where predictability of computations, 
strict satisfaction of intricately coupled constraints, and 
guarantees of safe operation are critical.

Architecture of Intelligent Agents Based on Deep 
Reinforcement Learning (DRL)

Deep reinforcement learning (DRL) is a machine learning 
paradigm aimed at constructing intelligent agents that learn 
optimal strategies through repeated interaction with the 
environment. This approach naturally corresponds to the 
tasks of controlling complex dynamic systems, among which 
are modern electric power systems with their pronounced 
nonlinearities, stochasticity, and stringent operational 
constraints.

In the context of power system control, the basic elements 
of the DRL framework are defined as follows [12]. An agent 
is a control program, typically implemented on a neural 
network architecture and making decisions at discrete time 
instants. In SAEO systems this is effectively a controller that 
sets the operating modes of generators, storage units, and 
controllable loads. The environment is the physical power 
system or its high-fidelity digital twin, from which the agent 
receives responses to its actions.

The state of the environment is interpreted as an informative 
feature vector describing the operation of the system at time 
t. It may include nodal load levels, instantaneous values of 
RES generation, market electricity prices, the state of charge 
of batteries, and other technological parameters sufficient 

for making correct decisions under partial observability and 
process stochasticity.

An action is a control input formed by the agent based on 
the observed state. Typical examples include changing a 
generator’s active power by ΔP, setting the storage charging 
current I, or initiating the disconnection of a specific group 
of consumers within demand response programs; both 
discrete and continuous action spaces are admissible, which 
predetermines the choice of algorithmic technique.

Reward represents a numerical feedback signal returned 
by the environment after an action is applied. The reward 
function is designed so that its maximization is aligned with 
the operator’s objectives: minimizing total costs, complying 
with technical and market constraints, improving reliability 
and stability of operation; positive incentives are set, for 
example, for cost reduction, while penalties are imposed for 
constraint violations, deviations of power quality parameters, 
and unserved energy [12].

Compared to traditional control methods, the advantages 
of DRL are significant [12]. First, adaptive learning is 
ensured: the agent continuously refines its strategy as 
external conditions change, whereas the rule-based logic 
of classical controllers is static. Second, high autonomy is 
achieved: nontrivial policies are discovered without their 
explicit encoding by a human. Third, the algorithms scale to 
high-dimensional state and action spaces, where classical 
approaches (for example, dynamic programming) face the 
curse of dimensionality. Finally, DRL is robust to incomplete 
and noisy data, which is critical for real power systems with 
limited observability.

The choice of a particular algorithm is determined by the 
nature of the task (discrete or continuous), the requirements 
for training stability, data efficiency, and the acceptable 
variability of policies. In practice, methods are used that can 
handle continuous actions and ensure stable convergence 
under limited interaction trajectories with the environment, 
which is especially important when training on a digital 
twin and subsequently transferring the policy to real-world 
operation (see Table 1).

Table 1. Comparison of key DRL algorithms for application in intelligent energy systems (compiled by the author based on 
[12, 25, 33]).

Algorithm Type Action space Key advantages Typical applications
Deep Q-Network 
(DQN)

Value-based 
(Value-based)

Discrete High data efficiency, relative 
simplicity of implementation.

Electric vehicle charging control (on/
off), switching equipment operating 
modes.

Proximal Policy 
Optimization 
(PPO)

Policy-based 
(Policy-based)

Discrete/
Continuous

High training stability and 
reliability, good balance between 
efficiency and complexity.

Smooth power control of energy 
storage systems, generation regulation, 
participation in ancillary services 
markets.

Advantage 
Actor-Critic 
(A2C/A3C)

Actor-Critic 
(Actor-Critic)

Discrete/
Continuous

Ability for parallel training (A3C), 
which speeds up the process.

Comprehensive microgrid control, 
coordination of distributed energy 
resources.
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In general, the architecture of DRL-based intelligent agents 
naturally aligns with the control tasks of modern electric 
power systems: the agent (a neural network controller), 
interacting with a digital twin or a real grid, at each step 
forms an action based on the observed state and receives a 
reward whose objective function is aligned with operational 
priorities (minimization of costs, compliance with 
technical and market constraints, reliability and stability). 
This formulation provides key advantages over classical 
methods: adaptability to nonlinearity and stochasticity, 
autonomous discovery of nontrivial strategies, scalability to 
high dimensionalities, and robustness to noise/incomplete 
observability. The choice of algorithm is dictated by the 
nature of control and the requirements for training stability 
and efficiency, as well as for the transferability of the 
policy from the digital twin to the real control loop: DQN 
is appropriate for discrete actions (e.g., switching/on-off), 
PPO — for continuous control with heightened stability 
requirements (smooth regulation of storage, generation, 
system reliability services), A2C/A3C — when parallel 
training and coordination of distributed resources are 
needed. Consequently, the correct formalization of states/
actions/rewards and a deliberate choice of DRL method 
make it possible to build autonomous controllers capable of 
safely and economically operating complex power systems 
under uncertainty.

The Concept of Digital Twins (Digital Twins) as an 
Operational Environment for SAEO

The application of deep reinforcement learning in critical 
energy infrastructure encounters a fundamental obstacle: a 
learn-by-failure strategy is unacceptable, since even a single 
control error in a real power system can trigger cascading 
outages, damage expensive equipment, and generate systemic 
risks for the reliability of energy supply [13]. A digital twin 
(DT) resolves this contradiction by providing a physically 
consistent, high-accuracy, and safe virtual environment 
suitable for the training, testing, and verification of DRL 
agents.

In the power sector, a DT is interpreted not as a static 
simulation scheme, but as a dynamic virtual replica of the 
physical power system, maintained in a near real-time mode 
and linked to it by bidirectional data flows [19]. The typical 
architecture of such a solution includes three mutually 
complementary layers [21]: the physical layer, covering 
generators, transmission lines, substations, consumers, 
sensors, and actuators; the virtual layer, containing 
mathematical models of components and processes that 
ensure their high-accuracy behavioral reproduction; the data 
and communication layer, integrating sensing, communication 
networks (including 5G), and industry protocols such as IEC 
61850, for synchronizing measurements and transmitting 
control actions between the physical and virtual sides.

Owing to this organization, a DT ceases to be merely a 

simulator and becomes an infrastructural instrument that 
makes the application of artificial intelligence methods in a 
critical environment practice-oriented and safe. In essence, 
a DT serves as a bridge from theory to operations: it enables 
transferring algorithms from the laboratory to the real power 
system while minimizing technological and operational risks 
[19].

The conceptual architecture of the proposed system, 
illustrating the interrelation of its key components, is 
presented in Figure 1.

Figure 1. Conceptual architecture of the integrated SAEO 
system (compiled by the author based on [13, 19, 29, 32]).

Within SAEO, the key functions of the DT form an end-to-
end cycle for the development and deployment of intelligent 
control. First, the DT serves as a training environment for DRL 
agents: millions of iterations can be executed in accelerated 
time without any impact on the physical system and without 
associated risks [13, 19]. Second, verification and validation 
are ensured: before operational deployment, any new control 
strategy is tested across thousands of scenarios, including 
rare and extreme modes, which increases confidence in the 
algorithms and reduces the likelihood of undesirable states 
when inserted into the real control loop [19].

Third, the DT supports predictive modeling: accurate forecasts 
of renewable generation and load levels provide the agent 
with high-quality input data, increasing the robustness and 
optimality of the resulting decisions [19]. Fourth, continuous 
asset condition monitoring and predictive maintenance rely 
on State of Health (SoH) assessment and Remaining Useful 
Life (RUL) forecasting; this enables the SAEO system to 
adaptively select operating modes, extending equipment 
service life and reducing total life-cycle costs [19, 30].

Finally, the DT provides a controlled platform for failure 
analysis and cyberattack modeling: in a safe environment 
it is possible to reproduce complex emergency scenarios, 
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investigate vulnerabilities, and verify mechanisms of fault 
tolerance and self-healing without risk to the real power 
system. Taken together, these capabilities form an integrated 
loop for the development, testing, and reliable deployment of 
intelligent control methods in the electric power industry.

Cyber-Physical Security of SAEO Systems

The infusion of information and control technologies 
into the physical energy domain radically redefines it as 
a cyber-physical system (Cyber-Physical System, CPS) — 
a tightly coupled network of sensing, computing nodes, 
and actuators [13]. The optimization effect under such 
coupling is colossal, but the expansion of the digital surface 
inevitably generates new classes of vulnerabilities. In this 
configuration, SAEO effectively serves as the brain center of 
the CPS and therefore becomes a primary target of attacks. 
Hence follows a methodological imperative: cybersecurity 
cannot be considered an external superstructure; it must 
be constitutively embedded in the SAEO architecture and 
function as its immune system.

The threat landscape for SAEO is multidimensional and 
dynamic [14]. Availability attacks (DoS) include deliberate 
overloading of communication channels and computing 
resources, leading to degradation or shutdown of control 
loops. In distributed power systems that are sensitive to 
delays and packet losses, such impacts directly undermine 
the stability of operating modes and complicate safe recovery 
after disturbances.

The most destructive are attacks on data integrity (FDIA), 
because they erode trust in measurements that underlie 
state estimation and decision making. The injection of 
statistically plausible distortions can not only deceive the 
state estimation module but also poison the training of a DRL 
agent, shifting its policy toward suboptimal or risky strategies 
[14]. The systemic consequences are manifested in covert 
destabilization of operating modes and the accumulation of 
risks that are not detected by standard consistency tests.

No less significant is the privacy measurement vector. Passive 
interception of telemetry and consumption profiles reveals 
commercially sensitive information and aspects of users 
private lives, creating a basis both for targeted attacks and 
for unscrupulous handling of data [14].

A substantial share of the aggregate risk is formed by 
malware and supply chain attacks: the insertion of modified 
code into the software stacks of controllers and digital 
twins (DT) at the stages of manufacturing, updating, and 
maintenance. This picture is complemented by advanced 
persistent threats (APT) — multistage, latent campaigns 
aimed at the long-term seizure of control over SCADA and 
associated subsystems [14, 27].

In such an adversarial environment, only defense-in-depth 

remains viable — a coordinated composition of technical, 
organizational, and regulatory measures with overlapping 
areas of responsibility and mutual redundancy of detection, 
containment, and recovery functions [15, 18]. End-to-end 
alignment of access, monitoring, and response policies at 
all levels — from the edge to decision-making centers — is 
critical.

Technical countermeasures should start with strict network 
segmentation and perimeter control: specialized firewalls 
and intrusion detection/prevention systems (IDS/IPS), 
adapted to the semantics of industrial protocols and the 
topology of power networks, provide baseline isolation 
of critical control loops and early indication of anomalies 
[14, 20]. They are reinforced by allowlisting mechanisms, 
microsegmentation, and a strict principle of least privilege.

Cryptographic protection is the default norm: end-to-end 
encryption, strong authentication, key management, and 
integrity control must cover all channels and data both in 
flight and at rest, providing cryptographically verifiable 
immutability and authenticity of telemetry and commands 
[22, 23]. Practical implementation must account for stringent 
latency constraints and real-time computational budgets.

A promising direction is AI-based anomaly detection: 
machine learning models trained on multi-domain features 
(measurement streams, network metadata, event logs) detect 
deviations characteristic of stealthy FDIA and composite 
attacks, increasing sensitivity at an acceptable false alarm 
level [21]. It is essential to ensure their adversarial robustness 
and to validate them on representative real-world data.

The security of the digital twin and the DRL agent requires 
regular verification and validation cycles, the use of 
sandboxes for safe shakedown testing of updates, as well 
as continuous integrity monitoring of data, model weights, 
and training artifacts. MLOps pipelines should include 
verifiable provenance chains (provenance), strict versioning, 
and rollback policies that minimize the risk of unnoticed 
compromise.

Finally, blockchain is considered a mechanism for ensuring 
immutability and transparency of transactions and logs 
in decentralized energy architectures. When properly 
integrated, the distributed ledger increases trust in auditing 
and reconciliation of accounting events; however, its 
deployment must be aligned with the throughput and latency 
requirements of critical operations [14]. Taken together, the 
listed measures form a coherent defense system, where each 
layer reinforces the others, and the full configuration — from 
cryptography to AI detectors — provides the required cyber 
resilience of SAEO within CPS [15], [21, 23]. Below, Table 2 
describes the Threat–Countermeasure matrix for the key 
components of the SAEO system [13, 15, 21, 23].
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Table 2. Threat–Countermeasure Matrix for key components of the SAEO system (compiled by the author based on [13, 15, 
21, 23]).

Component / 
Threat

False Data Injection 
(FDIA)

Denial of Service (DoS) Data interception Malware

Sensors and 
field devices

State estimation with bad 
data detection (BDD); 
sensor redundancy.

Physical protection; network 
segmentation.

Encryption of the 
communication channel 
(e.g., TLS/IPsec).

Firmware integrity 
verification; secure 
boot.

Communication 
network

Message authentication 
(e.g., HMAC); cryptographic 
protocols.

Intrusion prevention systems 
(IPS); traffic filtering.

End-to-end encryption; 
virtual private networks 
(VPN).

Deep packet 
inspection (DPI); 
network antivirus.

Digital twin 
database

Data integrity control; 
blockchain for transaction 
logs.

Data backup and replication; 
load balancing.

Data-at-rest encryption; 
strict access control.

Malware scanning; 
access control.

DRL agent 
(control model)

Robust training methods; 
anomaly detectors on 
input data.

Isolation of the computing 
environment; rate limiting.

Protection against 
model extraction (Model 
Extraction).

Model verification; 
execution in an 
isolated environment 
(sandbox).

That is, the cyber-physical nature of SAEO makes it 
simultaneously the center of the power system and a primary 
target, so security must be built into the architecture from 
the outset as an immune function rather than a bolt-on. The 
diversity of threats — from DoS and privacy leaks to FDIA, 
APT, and supply-chain compromise — requires multilayered 
defense with overlapping areas of responsibility: strict 
segmentation and the principle of least privilege, industry-
grade IDS/IPS and DPI, end-to-end cryptography under hard 
latency constraints, as well as AI-based anomaly detectors 
with verified adversarial robustness. The digital twin and the 
DRL agent must be accompanied by mature MLOps practices 
(verifiable provenance of data and weights, versioning, 
rollbacks, sandboxes, and continuous integrity monitoring), 
and distributed ledgers should be applied selectively for 
immutable accounting and audit where throughput and 
latency permit. Taken together, the systemic alignment of 
technical, organizational, and regulatory measures across 
the entire vertical — from the edge to the decision-making 
centers — forms resilient defense that reduces the risk of 
covert destabilization of operating regimes, protects privacy, 
and ensures the required cyber-resilience of SAEO within 
the CPS.

Chapter 2. Applied aspects, barriers, and 
prospects of SAEO
Optimal Control of Hybrid Renewable Energy 
Systems (HRES)

Hybrid renewable energy systems (HRES), combining 
stochastic generation sources (photovoltaic panels, wind 
turbines), a gas–steam turbine, and energy storage systems 
(ESS), constitute a representative testbed for applying 
SAEO. In this configuration, all primary energy sources 
— solar panels, the wind turbine, and the gas–steam 
turbine — interact as a single organism under SAEO. Diesel 
generators do not participate in normal load sharing and 

are engaged solely as emergency protection in the event of 
complete failure of all other system components. The control 
complexity here arises from the real-time requirement to 
reconcile intermittent RES-based generation with demand 
dynamics while simultaneously making economically 
optimal decisions regarding the engagement of storage and 
the main generating capacity [26].

Application of the SAEO framework provides a highly 
effective solution to this problem. A DRL agent trained in an 
HRES digital twin environment derives a complex nonlinear 
dispatch policy (dispatch strategy). It acts not reactively but 
proactively: it charges the ESS in advance using daytime solar 
generation to cover the evening demand peak or smoothly 
brings the gas–steam turbine to an economically optimal 
operating mode, thereby reducing fuel consumption and 
equipment wear. An illustrative example of the advantages 
of SAEO in energy storage control is shown in Figure 2.

Figure 2. Simulation of the state of charge (SoC) management 
of the SNE (compiled by the author based on [1-5; 34, 35]).

As a result, a compromise that is difficult to achieve for rigidly 
regulated controllers is attained between the levelized cost 
of energy (LCOE) and the reliability index of power supply 
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(LPSP). The outcome of such optimization is a more favorable 
trade-off between cost and reliability, as illustrated by the 
Pareto front in Figure 3.

Figure 3. Optimizing the trade-off between cost and 
reliability of HRES (compiled by the author based on [6-9]).

Thus, it can be stated that the application of SAEO in hybrid 
energy systems based on renewable sources — with 
photovoltaic and wind installations, a gas–steam turbine, 
and energy storage — ensures practically realizable optimal 
real-time control under conditions of stochastic generation 
and dynamic demand. Diesel generators in this case perform 
exclusively the function of emergency protection. A DRL agent 
trained in a digital twin environment establishes a proactive 
nonlinear dispatch strategy that charges the storage in 
advance with daytime solar energy to cover evening peaks 
and, when necessary, brings the gas–steam turbine to 
its economically optimal operating mode, reducing fuel 
consumption and equipment wear. The SoC control results 
(Fig. 2) demonstrate the attainment of a compromise between 
LCOE and LPSP that is difficult for rigid controllers, and the 
resulting Pareto front (Fig. 3) shifts toward lower costs at a 
given reliability (or higher reliability at fixed costs), which 
confirms the effectiveness of SAEO for joint optimization of 
the economic performance and reliability of HRES.

Adaptive Demand Response (Demand Response) 
and Predictive Maintenance

The capabilities of SAEO extend substantially beyond 
simple generation dispatch. Two central application 
areas are adaptive demand response (DR) and predictive 
maintenance.

Adaptive Demand Response: classical DR programs that rely 
on fixed tariff grids (for example, day–night) demonstrate 
limited effectiveness. SAEO shifts control to a mode of fully 
dynamic and personalized coordination. A DRL agent, trained 
on large volumes of smart-meter data within the digital 
twin (DT) loop, extracts complex behavioral consumption 
patterns and derives proactive policies. Instead of coarse 
price signals, SAEO generates targeted incentives, promptly 
modifies tariffs in real time, and coordinates groups of 
devices (air conditioners, water heaters, electric vehicle 

charging stations) for fine shaping of the load curve, which 
provides peak shaving, reduction of aggregate costs, and 
increased grid resilience [28].

Predictive Maintenance: the inclusion of asset state-of-health 
(SoH) indicators in the SAEO loop adds a new dimension to 
optimization. The digital twin continuously monitors key 
equipment operating parameters (for example, transformer 
winding temperature, turbine bearing vibration), and the 
resulting features are supplied to the DRL agent as components 
of the state vector. As a result, the agent optimizes operating 
regimes not only in terms of short-term economic efficiency 
but also with regard to long-term wear. It can, for example, 
slightly offload an overheating transformer or choose an ESS 
operating profile that minimizes cell degradation, thereby 
extending the lifetime of costly assets and reducing total life-
cycle costs [19].

Techno-Economic Analysis and Scaling of SAEO 
Solutions

Despite evident technological maturity, the diffusion of SAEO 
solutions encounters a combination of techno-economic and 
organizational barriers that objectively constrain the pace 
and amplitude of diffusion of the corresponding practices.

First, the configuration of costs is the key limiter. The 
deployment of SAEO is characterized by high capital 
intensity (CAPEX): it requires building a computational 
stack for digital twins (DT) and deep reinforcement learning 
(DRL) algorithms — from high-performance servers to cloud 
platforms; pervasive instrumentation of energy assets with 
sensors and IoT devices; as well as modernization of the 
communications infrastructure for reliable real-time data 
transmission. Operating expenditures (OPEX) are driven 
by software licensing, large-scale data management, and 
ensuring cyber-resilience, as well as the scarce competencies 
of interdisciplinary teams at the intersection of power 
engineering, data science, and information security [9].

Second, substantial technological challenges persist. Scaling 
DT architectures from the level of an individual microgrid 
to a regional or national power system generates extremely 
high computational loads; at the same time, the robust 
maintenance of synchronization and coherence of a multi-
module model in real time remains an open research problem 
that requires new approaches to distributed computing and 
model verification [21].

Third, the existing economic and market institutions are poorly 
adapted to the specifics of SAEO. The established formats for 
organizing wholesale and retail electricity markets, as well 
as tariff regulation, often fail to ensure reliable monetization 
of the effects created—enhanced flexibility, reduced system 
costs, and the provision of system services. The absence of a 
transparent business case and long-term investment signals, 
including predictable returns on the corresponding services, 
complicates investment decision-making and the scaling of 
pilot projects [24, 26].
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Finally, infrastructural constraints exert a critical impact. Physical infrastructure often becomes a bottleneck: long lead times 
for high-tech components, as well as complex and protracted procedures for approvals and permits for the construction of 
new transmission lines, offset the benefits of intelligent control, prolonging implementation timelines and increasing the 
total cost of projects [9]. Table 3 presents an analysis of techno-economic barriers to the deployment of SAEO.

Table 3. Analysis of techno-economic barriers during SAEO deployment (compiled by the author based on [7, 9, 21, 24, 
26]). 

Barrier type Specific problem Possible mitigation strategy
Technical High computational costs for DT and 

DRL.
Use hybrid cloud/edge computing (Cloud/Edge Computing); 
development of reduced-order models.

Technical DT scalability problem. Modular, federated approach to building DT; standardization of 
data exchange interfaces.

Economic High upfront capital expenditures 
(CAPEX).

Phased implementation starting with pilot projects at critical 
facilities; infrastructure as a service (IaaS) models.

Economic Absence of market mechanisms for 
monetizing flexibility.

Electricity market reform; introduction of charges for ancillary 
services; development of new tariff structures.

Regulatory Outdated regulations and standards. Development of new technical regulations and standards for 
intelligent control systems; creation of regulatory sandboxes.

Regulatory Data ownership and privacy issues. Clear legal definition of data rights; implementation of privacy-
preserving technologies (for example, homomorphic encryption).

Personnel Shortage of specialists with 
interdisciplinary competencies.

Targeted educational programs at universities; corporate training 
centers; partnerships with IT companies.

Overall, the techno-economic analysis shows that the scaling-
up of SAEO is constrained by a combination of factors: high 
capital intensity (construction of the DT/DRL stack, sensors/
IoT, communications) and substantial OPEX (licenses, 
data management, cyber-resilience, workforce shortages); 
unresolved technological challenges (extreme computational 
loads and maintaining real-time synchronization of multi-
module DTs); institutional market unpreparedness (weak 
monetization of flexibility and system services, lack of 
predictable investment signals); as well as infrastructural 
bottlenecks (long lead times for supply and permitting 
procedures). To overcome the barriers, an integrated 
program is required: technically — hybrid cloud/edge 
architectures, reduced-order models, modular-federated DTs 
with standardized data exchange interfaces; economically 
— phased pilots at critical facilities, IaaS approaches and 
market reforms with remuneration for ancillary services 
and adaptive tariffs; regulatory — updates of standards and 
regulatory sandboxes, legal certainty of data rights and the 
deployment of privacy-preserving technologies (including 
homomorphic encryption); organizationally — targeted 
training programs and partnerships with IT companies. 
Systematic execution of these steps, with a focus on TCO 
and cyber-resilience, will enable the deployment of scalable 
business cases and accelerate the diffusion of SAEO.

Risks, limitations, and Future Research Directions

The transition to AI-based autonomized control of power 
systems not only removes a layer of legacy problems but 
also creates fundamentally new classes of systemic risks. 
The same intelligent component that makes SAEO a highly 

effective instrument simultaneously makes it a target for 
intelligent and adaptive attacks. As a result, risk scenarios 
shift from failures of individual physical nodes (for example, 
transformer outages) to algorithmically induced systemic 
failures capable of evolving in a cascading manner and 
exceeding customary operational assumptions. This 
shift dictates an interdisciplinary research agenda at the 
intersection of power engineering, computer science, control 
theory, and cybersecurity.

A key source of vulnerabilities is the brittleness and limited 
capacity of models to generalize. DRL approaches that rely 
on historical data and synthetic scenarios often exhibit 
inadequate—and at times dangerous—behavior when 
confronted with black swans: rare, previously unobserved 
regimes absent from the training corpus. Sensitivity to 
distribution shifts and to incomplete descriptions of the 
environment increases the likelihood of erroneous control 
policies precisely during periods when maximal robustness 
and predictability are required.

No less significant is the black box of decision making. 
The opacity of deep neural networks complicates error 
attribution, undermines institutional trust, and complicates 
the certification of autonomous solutions for critical 
infrastructure [15, 25]. The deficit of interpretability 
blocks the deployment of formal verification procedures 
and accountability mechanisms necessary for regulatory 
compliance. To summarize strengths and weaknesses, as well 
as opportunities and threats associated with the adoption of 
SAEO, a SWOT analysis was conducted, the results of which 
are presented in Figure 4.
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Figure 4. SWOT analysis of the SAEO paradigm.

An additional layer of risk is associated with data privacy and 
security. SAEO operates large-scale, highly granular streams 
of measurements and commercially sensitive information, 
which heightens the challenges of protecting personal 
data and safeguarding trade secrets, including threats of 
unauthorized access, leaks, and delayed attacks via the 
compromise of training datasets [22, 23]. The deployment 
of SAEO is not only a contribution to resilience and climate 
stability but also a driver of economic growth. It is a system 
in which every unit of capital invested yields a return in the 
form of savings, jobs, investment, and geopolitical influence.

The deployment of the SAEO system is not an isolated IT 
initiative but a profound restructuring of the production–
energy system, generating substantial macroeconomic and 
climate outcomes. The impact is multilevel: from households 
and municipalities to the corporate sector and federal public 
finances, covering a wide range of industries from high 
technology to the agricultural sector.

The basic direct effect is expressed in a reduction of the 
aggregate cost of energy supply. Decentralization of generation 
reduces network losses and increases infrastructure 
resilience; the use of mechanisms for utilization of surplus 
output and peak shaving reduces the need for costly reserve 
capacity; the implementation of artificial intelligence systems 
increases the accuracy of demand forecasting and optimizes 
operating modes, thereby reducing operating costs; the 
substitution of imported energy carriers with locally 
produced hydrogen and renewable energy reduces currency 
risks. Taken together, this can provide savings on the order of 
100–150 billion US dollars per year at the national level.

The consolidated socio-economic effect manifests through 
strengthening employment and accelerating technological 
renewal. The growth of manufacturing and service support 
for renewable energy equipment, the construction and 

operation of hydrogen infrastructure, and the development 
of AI models and digital energy management platforms 
create stable demand for engineering and IT competencies. 
Agriculture fits organically into this framework: decentralized 
microgrids based on biogas and hydrogen increase the 
energy autonomy of agricultural enterprises. The potential 
increase in employment is estimated at up to 2 million jobs 
in the United States by 2040.

The investment impulse of SAEO is expressed by an inflow 
of private capital into generating capacities, storage systems, 
and distributed microgrids, simultaneously increasing the 
investment attractiveness of regions. Energy independence 
stimulates the economic development of remote territories 
and lowers infrastructure barriers for small and medium-
sized businesses; access to clean energy is capitalized in 
the value of real estate and industrial sites. The cumulative 
volume of private investment may reach around 500 billion 
USD over a 10–15-year horizon.

The fiscal result is also important. The reduction of subsidies 
for fossil fuels and the decrease in medical expenditures due 
to cleaner air are combined with lower costs for eliminating 
the consequences of climate-induced disasters. Additional 
savings arise from increased energy efficiency of military 
infrastructure facilities during the transition to SAEO 
microgrids. In total, this provides about 50–70 billion USD 
annually at the federal level.

Data management under such conditions should be 
regarded as a component of reliability architecture rather 
than an auxiliary function. Promising research directions 
aim to overcome the stated limitations. First, explainable 
AI (explainable AI, XAI) methods are required that provide 
interpretability of DRL agents decisions and traceability 
of their logic in terms relevant to engineering practice and 
regulatory oversight. These methods must be embedded 
directly into decision-making loops rather than applied 
exclusively post hoc.

Second, it is necessary to advance robust and transferable 
reinforcement learning: algorithms resilient to input data 
anomalies, distribution shifts, and partial observability, as 
well as mechanisms for rapid fine-tuning and adaptation to 
previously unseen conditions with strict safety guarantees.

Third, federated learning and privacy-preserving technologies 
constitute an important direction. Architectures that allow 
training on distributed datasets without their centralization 
make it possible to meet requirements for protecting 
personal and commercially sensitive data while maintaining 
model quality and timeliness.

Finally, software-hardware testbeds for verification 
(hardware-in-the-loop, HIL) are required, in which the DRL 
agent and the digital twin (digital twin, DT) interact with real 
equipment. Such testbeds provide testing conditions as close 
as possible to operation, reveal hidden interdisciplinary 
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effects, and establish reproducible protocols for assessing 
reliability and safety prior to deployment in the network.

Conclusion

Within this study, a comprehensive analysis of the foundations 
of intelligent adaptive optimization of energy consumption 
(SAEO) was conducted. Comparison of current data for 2024 
revealed systemic constraints of the energy transition: the 
outpacing growth of electricity demand and the hard physical 
limits of infrastructure. Under these conditions, shifting the 
emphasis from extensive capacity expansion to intensive, 
intelligently managed operation of the entire energy system 
becomes not merely preferable but the only viable option.

It has been demonstrated that a viable SAEO platform 
fundamentally cannot rely on a single technology line. The 
author’s hypothesis of the need for synergistic integration 
of deep reinforcement learning (DRL), digital twins (DT), 
and multi-level cybersecurity is confirmed: DRL performs 
the functions of an adaptive brain, DT plays the role of an 
operational-simulation nervous system, and cybersecurity 
serves as the basic immune system ensuring the resilience of 
the entire cyber-physical organism.

The practical value of the work lies in forming a holistic 
perspective for three key groups of stakeholders. For 
engineers and system architects, a structured methodology 
for designing next-generation SAEO systems is presented. 
For the scientific community, the most pressing and 
critically significant trajectories for further research are 
outlined, including explainable AI, robust learning, and the 
protection of data privacy. For legislators and policymakers, 
the need for new market designs and regulatory frameworks 
is emphasized, stimulating the deployment of intelligent 
technologies and properly rewarding their contribution to 
enhancing the flexibility and reliability of energy systems.

Looking ahead, as current barriers are removed, energy 
systems will evolve toward fully autonomous, self-healing, 
market-oriented intelligent ecosystems. The SAEO paradigm 
presented in the study serves as the methodological core, 
a kind of operating system of this future, where energy 
management is carried out not merely efficiently but truly 
intelligently.
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