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Against the backdrop of the rapid growth of global electricity demand, exacerbated by climate change and accelerated
electrification, the energy sector faces a dual challenge: ensuring reliability while simultaneously decarbonizing the
system. The handbook systematizes the interdisciplinary foundations of smart adaptive energy optimization (SAEO) as
a key approach and establishes an integrated conceptual framework for the design, deployment, and evaluation of SAEO
systems. It is demonstrated that SAEO increases the stability of hybrid renewable energy systems, optimizes demand-side
management, strengthens predictive maintenance, and improves techno-economic performance indicators. At the same
time, barriers to scaling are identified: high computational costs, data infrastructure requirements, and new classes of
systemic risks driven by the vulnerability of intelligent algorithms. A viable strategy for the transition to the next generation
of intelligent, autonomous, and sustainable energy systems is a holistic, system-integrated approach that treats control,
modeling, and security as an inseparable whole. The materials are intended for researchers, power engineers, system
architects, and regulators.
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INTRODUCTION

The global energy system is undergoing a qualitative
restructuring in which two powerful, at times conflicting
impulses intersect: the accelerated build-up of electricity
demand and the requirement for deep decarbonization as a
key instrument for countering climate risks. The indicators
for 2024 demonstrate the scale of the challenge: aggregate
global energy consumption increased by 2.2%, outpacing
the average growth rates of the previous decade [1]. The
balance has shifted particularly sharply in the power sector:
electricity demand grew by 4.3%—almost twice as fast as
global GDP growth [2]. This trajectory is explained by the
cumulative effect of widespread electrification of transport
and heat supply, the intensification of energy use in industry,
and the rapid growth of loads created by data centers and
artificial intelligence systems; extreme weather conditions
that drove record cooling demand also contributed [36, 37].

Against this backdrop, the deployment of low-carbon
technologies has accelerated. In 2024 renewables accounted
for 38% of the increase in global energy consumption, and
the combined share of clean generation (renewables plus

nuclear power) reached 40% of global electricity production
for the first time [2]. Nevertheless, the expansion of
renewables still lags behind the pace of demand growth, and
the resulting gap is being filled by fossil fuels. As a result, a
paradoxical situation is taking shape: despite record capital
expenditures on the development of green energy—USD 2.1
trillion in 2024—global CO, emissions continue to rise [2].

The energy transition is thus entering a more complex
phase — its honeymoon period is effectively ending. Annual
investment growth has slowed from 24-29% previously
to 11% in 2024 [6]. This is not about lowering targets but
about encountering systemic limits: rising project costs,
increasing technological complexity, and the emergence of
physical bottlenecks [7]. The shortages are most acute in
the supply chains of critical power equipment; for example,
delivery times for power transformers have lengthened
from 50 weeks in 2021 to 120-210 weeks in 2024 [9].
Consequently, the primary constraint on scaling renewables
is not generation per se, but the throughput and readiness
of grid infrastructure. Under these conditions, the emphasis
must shift from merely adding capacity to the intelligent
optimization of the entire energy system; this is why the
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SAEO concept becomes not just important but critical for the
successful implementation of the energy transition.

The academic corpus of existing research is saturated with
works on energy system optimization. A wide spectrum of
algorithms has been proposed — from classical analytical
and stochastic schemes to sophisticated metaheuristics,
including genetic algorithms (GA) and particle swarm
optimization (PSO) [10]. However, a considerable share
of this body of work addresses theoretical, static problem
statements under idealizing assumptions. As a result, a gap
persists between formal modeling and the construction of
integrated, scalable, and secure frameworks suitable for
operation in real, dynamically changing, and potentially
adversarial cyber-physical environments [11].

Traditional optimization approaches generally do not
provide the required adaptability for real-time control,
especially under the high stochasticity characteristic of RES-
based generation and modern consumption profiles [12].
In contrast, Al-oriented methods, despite demonstrated
effectiveness, often operate as black boxes. Their deployment
in critical infrastructure entails risks of unpredictable
behavior and enlarges the attack surface, including false
data injection attacks (FDIA) capable of poisoning model
training [13]. Thus, the research gap lies in the absence of an
integrated methodology that unifies three key aspects:

-intelligent control: Timely optimal decision-making under
uncertainty;

-high-precision modeling: The availability of a validated
digital (virtual) environment for safe testing and deployment
of control algorithms;

-guaranteed security: Built-in mechanisms to counter cyber-
physical threats targeting both the physical infrastructure
and the control intelligence.

The goal is to systematize the interdisciplinary
methodological foundations of SAEO and to propose an
integrated conceptual framework for the design, deployment,
and evaluation of such systems.

The scientific novelty lies in the formalization of a holistic
SAEO architecture that synergistically integrates deep
reinforcement learning agents (DRL) for adaptive action
selection, digital twins (DT) as the operational simulation
environment, and a multilayer cybersecurity paradigm as a
necessary condition for resilience.

The author’s hypothesis is based on the premise that
achieving reliable, scalable, and secure autonomous
optimization of energy consumption is determined not
by perfecting any single technology but by the systemic
integration of DRL, DT, and cybersecurity. Such synergy
is the most realistic path to bridging the gap between
theoretical constructs and practically viable, fault-tolerant
SAEO systems.

CHAPTER 1. TECHNOLOGICAL AND THEORETICAL
BASIS OF SAEO

Fundamental Principles of System Optimization in
the Energy Sector

At the core of any SAEO system lies a multiobjective
optimization formulation aimed at finding a rigorously
justified compromise among competing technical and
economic performance indicators. Formally, the problem
reduces to selecting a control strategy from an admissible
set defined by hard constraints, while ensuring optimality
in the sense of the chosen criterion approach (a vector
criterion or its scalarization), that is, to the minimization
or maximization of the corresponding objective function
subject to all constraints.

The first priority is the minimization of total costs, typically
through reducing the net present cost (NPC), the levelized
cost of energy (LCOE), and/or operating expenditures
(OPEX), including the fuel component and maintenance costs
[16]. This approach ensures intertemporal comparability
of alternatives and allows accounting for both capital and
operational effects.

The second priority is the minimization of greenhouse
gas emissions, that is, the deliberate reduction of the
energy system’s carbon footprint measured in tonnes of
CO, equivalent. This criterion integrates environmental
requirements into the optimization procedure and serves as
a tool for aligning energy and climate objectives [17].

The third priority is the maximization of reliability,
understood as ensuring continuity of energy supply given
the demand structure and resource constraints. In practice,
this is expressed either by minimizing the Loss of Power
Supply Probability (LPSP) or by maximizing the integral
reliability index (Reliability, REL), which makes it possible
to quantitatively rank solutions by their resilience to failures
and variability of operating regimes [10].

Optimization of operating modes and dispatch control of
the power system are carried out under strict system-level
constraints determined by both fundamental physical laws
and operational regulations. At every moment it is necessary
to ensure the balance of active power: the aggregate
generation output must strictly match the total demand
with account for network losses. It is no less important to
maintain power quality indicators — voltage and frequency
— within standardized ranges that guarantee stability and
safe operation of equipment. Additionally, operational
limits of infrastructure elements — generators, storage
units, and network devices — must be observed: ranges of
minimum and maximum active/reactive power, permissible
ramp-up and ramp-down rates, and for battery systems
— requirements for state of charge (SoC) and associated
technological constraints [10, 31].
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Historically, analytical and probabilistic approaches, as well
as metaheuristics (for example, particle swarm optimization,
PSO, and genetic algorithms, GA) [10], have been used to
solve such problems. However, in high-dimensional, dynamic,
and stochastic formulations characteristic of modern power
systems, their effectiveness decreases substantially: the
search for quasi-global extrema leads to a rapid growth of
computational costs, high sensitivity to disturbances makes
the obtained solutions unstable, and the transferability of
tuning across operating modes remains limited. As a result,
the listed methods prove to be of little use for real-time
operational control, where predictability of computations,
strict satisfaction of intricately coupled constraints, and
guarantees of safe operation are critical.

Architecture of Intelligent Agents Based on Deep
Reinforcement Learning (DRL)

Deep reinforcement learning (DRL) is a machine learning
paradigm aimed at constructing intelligent agents that learn
optimal strategies through repeated interaction with the
environment. This approach naturally corresponds to the
tasks of controlling complex dynamic systems, among which
are modern electric power systems with their pronounced
nonlinearities, stochasticity, and stringent operational
constraints.

In the context of power system control, the basic elements
of the DRL framework are defined as follows [12]. An agent
is a control program, typically implemented on a neural
network architecture and making decisions at discrete time
instants. In SAEO systems this is effectively a controller that
sets the operating modes of generators, storage units, and
controllable loads. The environment is the physical power
system or its high-fidelity digital twin, from which the agent
receives responses to its actions.

The state of the environment is interpreted as an informative
feature vector describing the operation of the system at time
t. It may include nodal load levels, instantaneous values of
RES generation, market electricity prices, the state of charge
of batteries, and other technological parameters sufficient

for making correct decisions under partial observability and
process stochasticity.

An action is a control input formed by the agent based on
the observed state. Typical examples include changing a
generator’s active power by AP, setting the storage charging
current I, or initiating the disconnection of a specific group
of consumers within demand response programs; both
discrete and continuous action spaces are admissible, which
predetermines the choice of algorithmic technique.

Reward represents a numerical feedback signal returned
by the environment after an action is applied. The reward
function is designed so that its maximization is aligned with
the operator’s objectives: minimizing total costs, complying
with technical and market constraints, improving reliability
and stability of operation; positive incentives are set, for
example, for cost reduction, while penalties are imposed for
constraint violations, deviations of power quality parameters,
and unserved energy [12].

Compared to traditional control methods, the advantages
of DRL are significant [12]. First, adaptive learning is
ensured: the agent continuously refines its strategy as
external conditions change, whereas the rule-based logic
of classical controllers is static. Second, high autonomy is
achieved: nontrivial policies are discovered without their
explicit encoding by a human. Third, the algorithms scale to
high-dimensional state and action spaces, where classical
approaches (for example, dynamic programming) face the
curse of dimensionality. Finally, DRL is robust to incomplete
and noisy data, which is critical for real power systems with
limited observability.

The choice of a particular algorithm is determined by the
nature of the task (discrete or continuous), the requirements
for training stability, data efficiency, and the acceptable
variability of policies. In practice, methods are used that can
handle continuous actions and ensure stable convergence
under limited interaction trajectories with the environment,
which is especially important when training on a digital
twin and subsequently transferring the policy to real-world
operation (see Table 1).

Table 1. Comparison of key DRL algorithms for application in intelligent energy systems (compiled by the author based on

[12, 25, 33]).

Algorithm Type Action space |Key advantages Typical applications

Deep Q-Network | Value-based |Discrete High data efficiency, relative|Electric vehicle charging control (on/

(DQN) (Value-based) simplicity of implementation. off), switching equipment operating
modes.

Proximal Policy |Policy-based |Discrete/ High training stability and|Smooth power control of energy

Optimization (Policy-based) |Continuous |reliability, good balance between |storage systems, generation regulation,

(PPO) efficiency and complexity. participation in ancillary services
markets.

Advantage Actor-Critic Discrete/ Ability for parallel training (A3C),|Comprehensive  microgrid control,

Actor-Critic (Actor-Critic) [Continuous |which speeds up the process. coordination of distributed energy

(A2C/A30Q) resources.
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In general, the architecture of DRL-based intelligent agents
naturally aligns with the control tasks of modern electric
power systems: the agent (a neural network controller),
interacting with a digital twin or a real grid, at each step
forms an action based on the observed state and receives a
reward whose objective function is aligned with operational
priorities (minimization of costs, compliance with
technical and market constraints, reliability and stability).
This formulation provides key advantages over classical
methods: adaptability to nonlinearity and stochasticity,
autonomous discovery of nontrivial strategies, scalability to
high dimensionalities, and robustness to noise/incomplete
observability. The choice of algorithm is dictated by the
nature of control and the requirements for training stability
and efficiency, as well as for the transferability of the
policy from the digital twin to the real control loop: DQN
is appropriate for discrete actions (e.g., switching/on-off),
PPO — for continuous control with heightened stability
requirements (smooth regulation of storage, generation,
system reliability services), A2C/A3C — when parallel
training and coordination of distributed resources are
needed. Consequently, the correct formalization of states/
actions/rewards and a deliberate choice of DRL method
make it possible to build autonomous controllers capable of
safely and economically operating complex power systems
under uncertainty.

The Concept of Digital Twins (Digital Twins) as an
Operational Environment for SAEO

The application of deep reinforcement learning in critical
energy infrastructure encounters a fundamental obstacle: a
learn-by-failure strategy is unacceptable, since even a single
control error in a real power system can trigger cascading
outages, damage expensive equipment, and generate systemic
risks for the reliability of energy supply [13]. A digital twin
(DT) resolves this contradiction by providing a physically
consistent, high-accuracy, and safe virtual environment
suitable for the training, testing, and verification of DRL
agents.

In the power sector, a DT is interpreted not as a static
simulation scheme, but as a dynamic virtual replica of the
physical power system, maintained in a near real-time mode
and linked to it by bidirectional data flows [19]. The typical
architecture of such a solution includes three mutually
complementary layers [21]: the physical layer, covering
generators, transmission lines, substations, consumers,
sensors, and actuators; the virtual layer, containing
mathematical models of components and processes that
ensure their high-accuracy behavioral reproduction; the data
and communication layer, integrating sensing, communication
networks (including 5G), and industry protocols such as IEC
61850, for synchronizing measurements and transmitting
control actions between the physical and virtual sides.

Owing to this organization, a DT ceases to be merely a

simulator and becomes an infrastructural instrument that
makes the application of artificial intelligence methods in a
critical environment practice-oriented and safe. In essence,
a DT serves as a bridge from theory to operations: it enables
transferring algorithms from the laboratory to the real power
system while minimizing technological and operational risks
[19].

The conceptual architecture of the proposed system,
illustrating the interrelation of its key components, is
presented in Figure 1.
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Figure 1. Conceptual architecture of the integrated SAEO
system (compiled by the author based on [13, 19, 29, 32]).

Within SAEO, the key functions of the DT form an end-to-
end cycle for the development and deployment of intelligent
control. First, the DT serves as a training environment for DRL
agents: millions of iterations can be executed in accelerated
time without any impact on the physical system and without
associated risks [13, 19]. Second, verification and validation
are ensured: before operational deployment, any new control
strategy is tested across thousands of scenarios, including
rare and extreme modes, which increases confidence in the
algorithms and reduces the likelihood of undesirable states
when inserted into the real control loop [19].

Third, the DT supports predictive modeling: accurate forecasts
of renewable generation and load levels provide the agent
with high-quality input data, increasing the robustness and
optimality of the resulting decisions [19]. Fourth, continuous
asset condition monitoring and predictive maintenance rely
on State of Health (SoH) assessment and Remaining Useful
Life (RUL) forecasting; this enables the SAEO system to
adaptively select operating modes, extending equipment
service life and reducing total life-cycle costs [19, 30].

Finally, the DT provides a controlled platform for failure
analysis and cyberattack modeling: in a safe environment
it is possible to reproduce complex emergency scenarios,
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investigate vulnerabilities, and verify mechanisms of fault
tolerance and self-healing without risk to the real power
system. Taken together, these capabilities form an integrated
loop for the development, testing, and reliable deployment of
intelligent control methods in the electric power industry.

Cyber-Physical Security of SAEO Systems

The infusion of information and control technologies
into the physical energy domain radically redefines it as
a cyber-physical system (Cyber-Physical System, CPS) —
a tightly coupled network of sensing, computing nodes,
and actuators [13]. The optimization effect under such
coupling is colossal, but the expansion of the digital surface
inevitably generates new classes of vulnerabilities. In this
configuration, SAEO effectively serves as the brain center of
the CPS and therefore becomes a primary target of attacks.
Hence follows a methodological imperative: cybersecurity
cannot be considered an external superstructure; it must
be constitutively embedded in the SAEO architecture and
function as its immune system.

The threat landscape for SAEO is multidimensional and
dynamic [14]. Availability attacks (DoS) include deliberate
overloading of communication channels and computing
resources, leading to degradation or shutdown of control
loops. In distributed power systems that are sensitive to
delays and packet losses, such impacts directly undermine
the stability of operating modes and complicate safe recovery
after disturbances.

The most destructive are attacks on data integrity (FDIA),
because they erode trust in measurements that underlie
state estimation and decision making. The injection of
statistically plausible distortions can not only deceive the
state estimation module but also poison the training of a DRL
agent, shifting its policy toward suboptimal or risky strategies
[14]. The systemic consequences are manifested in covert
destabilization of operating modes and the accumulation of
risks that are not detected by standard consistency tests.

No less significant is the privacy measurement vector. Passive
interception of telemetry and consumption profiles reveals
commercially sensitive information and aspects of users
private lives, creating a basis both for targeted attacks and
for unscrupulous handling of data [14].

A substantial share of the aggregate risk is formed by
malware and supply chain attacks: the insertion of modified
code into the software stacks of controllers and digital
twins (DT) at the stages of manufacturing, updating, and
maintenance. This picture is complemented by advanced
persistent threats (APT) — multistage, latent campaigns
aimed at the long-term seizure of control over SCADA and
associated subsystems [14, 27].

In such an adversarial environment, only defense-in-depth

remains viable — a coordinated composition of technical,
organizational, and regulatory measures with overlapping
areas of responsibility and mutual redundancy of detection,
containment, and recovery functions [15, 18]. End-to-end
alignment of access, monitoring, and response policies at
all levels — from the edge to decision-making centers — is
critical.

Technical countermeasures should start with strict network
segmentation and perimeter control: specialized firewalls
and intrusion detection/prevention systems (IDS/IPS),
adapted to the semantics of industrial protocols and the
topology of power networks, provide baseline isolation
of critical control loops and early indication of anomalies
[14, 20]. They are reinforced by allowlisting mechanisms,
microsegmentation, and a strict principle of least privilege.

Cryptographic protection is the default norm: end-to-end
encryption, strong authentication, key management, and
integrity control must cover all channels and data both in
flight and at rest, providing cryptographically verifiable
immutability and authenticity of telemetry and commands
[22,23]. Practical implementation mustaccount for stringent
latency constraints and real-time computational budgets.

A promising direction is Al-based anomaly detection:
machine learning models trained on multi-domain features
(measurement streams, network metadata, eventlogs) detect
deviations characteristic of stealthy FDIA and composite
attacks, increasing sensitivity at an acceptable false alarm
level [21].1tis essential to ensure their adversarial robustness
and to validate them on representative real-world data.

The security of the digital twin and the DRL agent requires
regular verification and validation cycles, the use of
sandboxes for safe shakedown testing of updates, as well
as continuous integrity monitoring of data, model weights,
and training artifacts. MLOps pipelines should include
verifiable provenance chains (provenance), strict versioning,
and rollback policies that minimize the risk of unnoticed
compromise.

Finally, blockchain is considered a mechanism for ensuring
immutability and transparency of transactions and logs
in decentralized energy architectures. When properly
integrated, the distributed ledger increases trust in auditing
and reconciliation of accounting events; however, its
deployment must be aligned with the throughput and latency
requirements of critical operations [14]. Taken together, the
listed measures form a coherent defense system, where each
layer reinforces the others, and the full configuration — from
cryptography to Al detectors — provides the required cyber
resilience of SAEO within CPS [15], [21, 23]. Below, Table 2
describes the Threat-Countermeasure matrix for the key
components of the SAEO system [13, 15, 21, 23].
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Table 2. Threat-Countermeasure Matrix for key components of the SAEO system (compiled by the author based on [13, 15,

21,23).
Component/ |False Data Injection|Denial of Service (DoS) Data interception Malware
Threat (FDIA)

Sensors and State estimation with bad |Physical protection; network|Encryption  of  the|Firmware integrity
field devices data detection (BDD);|segmentation. communication channel|verification; secure
sensor redundancy. (e.g., TLS/1Psec). boot.

Communication |[Message authentication |Intrusion prevention systems|End-to-end encryption;|Deep packet
network (e.g.,HMAC); cryptographic| (IPS); traffic filtering. virtual private networks |inspection (DPD);

protocols. (VPN). network antivirus.
Digital twin Data integrity control;|Data backup and replication;|Data-at-rest encryption; |Malware scanning;
database blockchain for transaction |load balancing. strict access control. access control.

logs.
DRL agent Robust training methods;|Isolation of the computing|Protection against|Model verification;
(control model) |anomaly detectors on|environment; rate limiting. |model extraction (Model|execution in an

input data. Extraction). isolated environment

(sandbox).

That is, the cyber-physical nature of SAEO makes it
simultaneously the center of the power system and a primary
target, so security must be built into the architecture from
the outset as an immune function rather than a bolt-on. The
diversity of threats — from DoS and privacy leaks to FDIA,
APT, and supply-chain compromise — requires multilayered
defense with overlapping areas of responsibility: strict
segmentation and the principle of least privilege, industry-
grade IDS/IPS and DPI, end-to-end cryptography under hard
latency constraints, as well as Al-based anomaly detectors
with verified adversarial robustness. The digital twin and the
DRL agent must be accompanied by mature MLOps practices
(verifiable provenance of data and weights, versioning,
rollbacks, sandboxes, and continuous integrity monitoring),
and distributed ledgers should be applied selectively for
immutable accounting and audit where throughput and
latency permit. Taken together, the systemic alignment of
technical, organizational, and regulatory measures across
the entire vertical — from the edge to the decision-making
centers — forms resilient defense that reduces the risk of
covert destabilization of operating regimes, protects privacy,
and ensures the required cyber-resilience of SAEO within
the CPS.

CHAPTER 2. APPLIED ASPECTS, BARRIERS, AND
PROSPECTS OF SAEO

Optimal Control of Hybrid Renewable Energy
Systems (HRES)

Hybrid renewable energy systems (HRES), combining
stochastic generation sources (photovoltaic panels, wind
turbines), a gas-steam turbine, and energy storage systems
(ESS), constitute a representative testbed for applying
SAEO. In this configuration, all primary energy sources
— solar panels, the wind turbine, and the gas-steam
turbine — interact as a single organism under SAEO. Diesel
generators do not participate in normal load sharing and

are engaged solely as emergency protection in the event of
complete failure of all other system components. The control
complexity here arises from the real-time requirement to
reconcile intermittent RES-based generation with demand
dynamics while simultaneously making economically
optimal decisions regarding the engagement of storage and
the main generating capacity [26].

Application of the SAEO framework provides a highly
effective solution to this problem. A DRL agent trained in an
HRES digital twin environment derives a complex nonlinear
dispatch policy (dispatch strategy). It acts not reactively but
proactively: it charges the ESS in advance using daytime solar
generation to cover the evening demand peak or smoothly
brings the gas-steam turbine to an economically optimal
operating mode, thereby reducing fuel consumption and
equipment wear. An illustrative example of the advantages
of SAEO in energy storage control is shown in Figure 2.
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Figure 2. Simulation of the state of charge (SoC) management
of the SNE (compiled by the author based on [1-5; 34, 35]).

As aresult,a compromise that is difficult to achieve for rigidly
regulated controllers is attained between the levelized cost
of energy (LCOE) and the reliability index of power supply
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(LPSP). The outcome of such optimization is a more favorable
trade-off between cost and reliability, as illustrated by the
Pareto front in Figure 3.
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Figure 3. Optimizing the trade-off between cost and
reliability of HRES (compiled by the author based on [6-9]).

Thus, it can be stated that the application of SAEO in hybrid
energy systems based on renewable sources — with
photovoltaic and wind installations, a gas-steam turbine,
and energy storage — ensures practically realizable optimal
real-time control under conditions of stochastic generation
and dynamic demand. Diesel generators in this case perform
exclusively the function of emergency protection. A DRL agent
trained in a digital twin environment establishes a proactive
nonlinear dispatch strategy that charges the storage in
advance with daytime solar energy to cover evening peaks
and, when necessary, brings the gas-steam turbine to
its economically optimal operating mode, reducing fuel
consumption and equipment wear. The SoC control results
(Fig. 2) demonstrate the attainment of a compromise between
LCOE and LPSP that is difficult for rigid controllers, and the
resulting Pareto front (Fig. 3) shifts toward lower costs at a
given reliability (or higher reliability at fixed costs), which
confirms the effectiveness of SAEO for joint optimization of
the economic performance and reliability of HRES.

Adaptive Demand Response (Demand Response)
and Predictive Maintenance

The capabilities of SAEO extend substantially beyond
simple generation dispatch. Two central application
areas are adaptive demand response (DR) and predictive
maintenance.

Adaptive Demand Response: classical DR programs that rely
on fixed tariff grids (for example, day-night) demonstrate
limited effectiveness. SAEO shifts control to a mode of fully
dynamic and personalized coordination. A DRL agent, trained
on large volumes of smart-meter data within the digital
twin (DT) loop, extracts complex behavioral consumption
patterns and derives proactive policies. Instead of coarse
price signals, SAEO generates targeted incentives, promptly
modifies tariffs in real time, and coordinates groups of
devices (air conditioners, water heaters, electric vehicle

charging stations) for fine shaping of the load curve, which
provides peak shaving, reduction of aggregate costs, and
increased grid resilience [28].

Predictive Maintenance: the inclusion of asset state-of-health
(SoH) indicators in the SAEO loop adds a new dimension to
optimization. The digital twin continuously monitors key
equipment operating parameters (for example, transformer
winding temperature, turbine bearing vibration), and the
resulting features are supplied to the DRL agent as components
of the state vector. As a result, the agent optimizes operating
regimes not only in terms of short-term economic efficiency
but also with regard to long-term wear. It can, for example,
slightly offload an overheating transformer or choose an ESS
operating profile that minimizes cell degradation, thereby
extending the lifetime of costly assets and reducing total life-
cycle costs [19].

Techno-Economic Analysis and Scaling of SAEO
Solutions

Despite evident technological maturity, the diffusion of SAEO
solutions encounters a combination of techno-economic and
organizational barriers that objectively constrain the pace
and amplitude of diffusion of the corresponding practices.

First, the configuration of costs is the key limiter. The
deployment of SAEO is characterized by high capital
intensity (CAPEX): it requires building a computational
stack for digital twins (DT) and deep reinforcement learning
(DRL) algorithms — from high-performance servers to cloud
platforms; pervasive instrumentation of energy assets with
sensors and IoT devices; as well as modernization of the
communications infrastructure for reliable real-time data
transmission. Operating expenditures (OPEX) are driven
by software licensing, large-scale data management, and
ensuring cyber-resilience, as well as the scarce competencies
of interdisciplinary teams at the intersection of power
engineering, data science, and information security [9].

Second, substantial technological challenges persist. Scaling
DT architectures from the level of an individual microgrid
to a regional or national power system generates extremely
high computational loads; at the same time, the robust
maintenance of synchronization and coherence of a multi-
module model in real time remains an open research problem
that requires new approaches to distributed computing and
model verification [21].

Third, the existing economic and market institutions are poorly
adapted to the specifics of SAEO. The established formats for
organizing wholesale and retail electricity markets, as well
as tariff regulation, often fail to ensure reliable monetization
of the effects created—enhanced flexibility, reduced system
costs, and the provision of system services. The absence of a
transparent business case and long-term investment signals,
including predictable returns on the corresponding services,
complicates investment decision-making and the scaling of

pilot projects [24, 26].
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Finally, infrastructural constraints exert a critical impact. Physical infrastructure often becomes a bottleneck: long lead times
for high-tech components, as well as complex and protracted procedures for approvals and permits for the construction of
new transmission lines, offset the benefits of intelligent control, prolonging implementation timelines and increasing the
total cost of projects [9]. Table 3 presents an analysis of techno-economic barriers to the deployment of SAEO.

Table 3. Analysis of techno-economic barriers during SAEO deployment (compiled by the author based on [7, 9, 21, 24,

26]).
Barrier type |Specific problem Possible mitigation strategy
Technical High computational costs for DT and|Use hybrid cloud/edge computing (Cloud/Edge Computing);
DRL. development of reduced-order models.
Technical DT scalability problem. Modular, federated approach to building DT; standardization of
data exchange interfaces.
Economic High upfront capital expenditures|Phased implementation starting with pilot projects at critical
(CAPEX). facilities; infrastructure as a service (IaaS) models.
Economic Absence of market mechanisms for|Electricity market reform; introduction of charges for ancillary
monetizing flexibility. services; development of new tariff structures.
Regulatory Outdated regulations and standards. |Development of new technical regulations and standards for
intelligent control systems; creation of regulatory sandboxes.
Regulatory Data ownership and privacy issues. Clear legal definition of data rights; implementation of privacy-
preserving technologies (for example, homomorphic encryption).
Personnel Shortage of  specialists with | Targeted educational programs at universities; corporate training
interdisciplinary competencies. centers; partnerships with IT companies.

Overall, the techno-economic analysis shows that the scaling-
up of SAEO is constrained by a combination of factors: high
capital intensity (construction of the DT /DRL stack, sensors/
IoT, communications) and substantial OPEX (licenses,
data management, cyber-resilience, workforce shortages);
unresolved technological challenges (extreme computational
loads and maintaining real-time synchronization of multi-
module DTs); institutional market unpreparedness (weak
monetization of flexibility and system services, lack of
predictable investment signals); as well as infrastructural
bottlenecks (long lead times for supply and permitting
procedures). To overcome the barriers, an integrated
program is required: technically — hybrid cloud/edge
architectures, reduced-order models, modular-federated DTs
with standardized data exchange interfaces; economically
— phased pilots at critical facilities, IaaS approaches and
market reforms with remuneration for ancillary services
and adaptive tariffs; regulatory — updates of standards and
regulatory sandboxes, legal certainty of data rights and the
deployment of privacy-preserving technologies (including
homomorphic encryption); organizationally — targeted
training programs and partnerships with IT companies.
Systematic execution of these steps, with a focus on TCO
and cyber-resilience, will enable the deployment of scalable
business cases and accelerate the diffusion of SAEO.

Risks, limitations, and Future Research Directions

The transition to Al-based autonomized control of power
systems not only removes a layer of legacy problems but
also creates fundamentally new classes of systemic risks.
The same intelligent component that makes SAEO a highly

effective instrument simultaneously makes it a target for
intelligent and adaptive attacks. As a result, risk scenarios
shift from failures of individual physical nodes (for example,
transformer outages) to algorithmically induced systemic
failures capable of evolving in a cascading manner and
exceeding customary operational assumptions. This
shift dictates an interdisciplinary research agenda at the
intersection of power engineering, computer science, control
theory, and cybersecurity.

A key source of vulnerabilities is the brittleness and limited
capacity of models to generalize. DRL approaches that rely
on historical data and synthetic scenarios often exhibit
inadequate—and at times dangerous—behavior when
confronted with black swans: rare, previously unobserved
regimes absent from the training corpus. Sensitivity to
distribution shifts and to incomplete descriptions of the
environment increases the likelihood of erroneous control
policies precisely during periods when maximal robustness
and predictability are required.

No less significant is the black box of decision making.
The opacity of deep neural networks complicates error
attribution, undermines institutional trust, and complicates
the certification of autonomous solutions for critical
infrastructure [15, 25]. The deficit of interpretability
blocks the deployment of formal verification procedures
and accountability mechanisms necessary for regulatory
compliance. To summarize strengths and weaknesses, as well
as opportunities and threats associated with the adoption of
SAEQ, a SWOT analysis was conducted, the results of which
are presented in Figure 4.
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Figure 4. SWOT analysis of the SAEO paradigm.

An additional layer of risk is associated with data privacy and
security. SAEO operates large-scale, highly granular streams
of measurements and commercially sensitive information,
which heightens the challenges of protecting personal
data and safeguarding trade secrets, including threats of
unauthorized access, leaks, and delayed attacks via the
compromise of training datasets [22, 23]. The deployment
of SAEO is not only a contribution to resilience and climate
stability but also a driver of economic growth. It is a system
in which every unit of capital invested yields a return in the
form of savings, jobs, investment, and geopolitical influence.

The deployment of the SAEO system is not an isolated IT
initiative but a profound restructuring of the production-
energy system, generating substantial macroeconomic and
climate outcomes. The impact is multilevel: from households
and municipalities to the corporate sector and federal public
finances, covering a wide range of industries from high
technology to the agricultural sector.

The basic direct effect is expressed in a reduction of the
aggregate cost of energy supply. Decentralization of generation
reduces network losses and increases infrastructure
resilience; the use of mechanisms for utilization of surplus
output and peak shaving reduces the need for costly reserve
capacity; the implementation of artificial intelligence systems
increases the accuracy of demand forecasting and optimizes
operating modes, thereby reducing operating costs; the
substitution of imported energy carriers with locally
produced hydrogen and renewable energy reduces currency
risks. Taken together, this can provide savings on the order of
100-150 billion US dollars per year at the national level.

The consolidated socio-economic effect manifests through
strengthening employment and accelerating technological
renewal. The growth of manufacturing and service support
for renewable energy equipment, the construction and

operation of hydrogen infrastructure, and the development
of Al models and digital energy management platforms
create stable demand for engineering and IT competencies.
Agriculture fits organically into this framework: decentralized
microgrids based on biogas and hydrogen increase the
energy autonomy of agricultural enterprises. The potential
increase in employment is estimated at up to 2 million jobs
in the United States by 2040.

The investment impulse of SAEO is expressed by an inflow
of private capital into generating capacities, storage systems,
and distributed microgrids, simultaneously increasing the
investment attractiveness of regions. Energy independence
stimulates the economic development of remote territories
and lowers infrastructure barriers for small and medium-
sized businesses; access to clean energy is capitalized in
the value of real estate and industrial sites. The cumulative
volume of private investment may reach around 500 billion
USD over a 10-15-year horizon.

The fiscal result is also important. The reduction of subsidies
for fossil fuels and the decrease in medical expenditures due
to cleaner air are combined with lower costs for eliminating
the consequences of climate-induced disasters. Additional
savings arise from increased energy efficiency of military
infrastructure facilities during the transition to SAEO
microgrids. In total, this provides about 50-70 billion USD
annually at the federal level.

Data management under such conditions should be
regarded as a component of reliability architecture rather
than an auxiliary function. Promising research directions
aim to overcome the stated limitations. First, explainable
Al (explainable Al, XAI) methods are required that provide
interpretability of DRL agents decisions and traceability
of their logic in terms relevant to engineering practice and
regulatory oversight. These methods must be embedded
directly into decision-making loops rather than applied
exclusively post hoc.

Second, it is necessary to advance robust and transferable
reinforcement learning: algorithms resilient to input data
anomalies, distribution shifts, and partial observability, as
well as mechanisms for rapid fine-tuning and adaptation to
previously unseen conditions with strict safety guarantees.

Third, federated learning and privacy-preserving technologies
constitute an important direction. Architectures that allow
training on distributed datasets without their centralization
make it possible to meet requirements for protecting
personal and commercially sensitive data while maintaining
model quality and timeliness.

Finally, software-hardware testbeds for verification
(hardware-in-the-loop, HIL) are required, in which the DRL
agent and the digital twin (digital twin, DT) interact with real
equipment. Such testbeds provide testing conditions as close
as possible to operation, reveal hidden interdisciplinary
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effects, and establish reproducible protocols for assessing
reliability and safety prior to deployment in the network.

CONCLUSION

Within this study, a comprehensive analysis of the foundations
of intelligent adaptive optimization of energy consumption
(SAEO) was conducted. Comparison of current data for 2024
revealed systemic constraints of the energy transition: the
outpacing growth of electricity demand and the hard physical
limits of infrastructure. Under these conditions, shifting the
emphasis from extensive capacity expansion to intensive,
intelligently managed operation of the entire energy system
becomes not merely preferable but the only viable option.

It has been demonstrated that a viable SAEO platform
fundamentally cannot rely on a single technology line. The
author’s hypothesis of the need for synergistic integration
of deep reinforcement learning (DRL), digital twins (DT),
and multi-level cybersecurity is confirmed: DRL performs
the functions of an adaptive brain, DT plays the role of an
operational-simulation nervous system, and cybersecurity
serves as the basic immune system ensuring the resilience of
the entire cyber-physical organism.

The practical value of the work lies in forming a holistic
perspective for three key groups of stakeholders. For
engineers and system architects, a structured methodology
for designing next-generation SAEO systems is presented.
For the scientific community, the most pressing and
critically significant trajectories for further research are
outlined, including explainable Al, robust learning, and the
protection of data privacy. For legislators and policymakers,
the need for new market designs and regulatory frameworks
is emphasized, stimulating the deployment of intelligent
technologies and properly rewarding their contribution to
enhancing the flexibility and reliability of energy systems.

Looking ahead, as current barriers are removed, energy
systems will evolve toward fully autonomous, self-healing,
market-oriented intelligent ecosystems. The SAEO paradigm
presented in the study serves as the methodological core,
a kind of operating system of this future, where energy
management is carried out not merely efficiently but truly
intelligently.
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