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The article presents a systematic literature review examining how artificial intelligence methods (LLM/GenAI, computer 
vision, deep learning, and multi-agent architectures) accelerate mobile application development and testing within the 
mobile SDLC. The objective is to address a deficit of domain-specific systematisation for mobile engineering and to answer 
three classes of questions: which AI approaches are applied across development and QA stages, which acceleration and 
efficiency metrics are empirically substantiated, and which quality/security risks accompany the adoption of generative 
tools. The relevance is driven by the growing complexity of mobile ecosystems and the limited scalability of manual 
testing and script-based automation, particularly due to brittleness under GUI changes. The novelty of the review lies in 
synthesising evidence from 28 selected studies from 2019 to 2025, with an explicit focus on mobile-specific constraints, 
and in juxtaposing speed gains against a trust contour. The principal findings are as follows: AI assistants demonstrate a 
substantial acceleration of routine tasks (up to ~55%) and a reduction in timelines for large-scale migrations. In testing, a 
transition toward LLM agents is observed, enabling high coverage at both scenario and element levels, as well as resilience 
to UI evolution. Concurrently, a trust crisis is documented due to a significant share of vulnerabilities in generated code, 
dependency hallucinations, and increased technical debt, necessitating the institutionalisation of verification practices 
and secure-by-default principles. The article is intended to be beneficial to software engineering researchers and to mobile 
development/QA practitioners integrating GenAI into workflows.
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Abstract

Introduction
Over the past decade, the mobile app ecosystem has evolved 
from the simple development of native apps to advanced 
ecosystems based on cloud computing, the Internet of 
Things, and embedded AI. Analysts expect revenue from AI-
enabled mobile apps to increase to $26.3 billion by 2030, 
growing at a compound annual growth rate (CAGR) of 38.7% 
over this period [1]. An exponential increase in complexity 
accompanies this growth: developers must maintain 
functional parity between Android and iOS platforms, adapt 
interfaces to hundreds of screen resolutions, and ensure data 
security under continuously evolving threats [2].

Conventional development and quality assurance (QA) 
methodologies are approaching the limits of their scalability. 
Manual testing, which still constitutes a substantial share of 
processes in the mobile industry, is labour-intensive, slow, 
and susceptible to human error [3]. Script-based automated 
testing (e.g., using Appium or Espresso) suffers from the 
brittleness problem: minor changes to the graphical user 
interface (GUI) can cause test failures, requiring significant 

resources for maintenance and updates [4]. In development, 
a shortage of qualified personnel exacerbates technical debt, 
compelling teams to automate routine cognitive tasks.

The emergence and rapid development of large language 
models (LLMs) and generative artificial intelligence 
(GenAI) in 2022–2025 marked the onset of a new era in 
software engineering. Tools such as GitHub Copilot, Amazon 
CodeWhisperer, and specialised testing agents provide 
not only automation of repetitive actions but also partial 
autonomy in decision-making.

Unlike traditional static code analysers or record-and-replay 
tools, contemporary AI systems exhibit the capacity for 
semantic contextual understanding [5]. They can also be used 
to generate syntactically correct code from natural-language 
descriptions (Text-to-Code), recognise and understand 
screenshots, including interface components, as a human 
would (Vision-based Testing), and autonomously plan and 
execute complex user workflows, including robustness to 
unexpected states and behaviours of the tested application.
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It is expected to solve the mobile development trilemma of 
speed, quality, and cost simultaneously. However, practice 
indicates that AI adoption is not risk-free. The phenomena 
of hallucinations and the production of vulnerable code 
introduce new challenges for the industry, requiring rigorous 
scientific analysis [6].

Despite the active growth of publications on AI applications 
in software engineering, a clear deficit remains in systematic 
studies focused specifically on the mobile domain. Most 
existing reviews address either general issues of LLM 
adoption in SE or narrow aspects of GUI testing [2]. Mobile 
development specificity, device resource constraints, touch 
interaction characteristics, stringent UX requirements, and 
security constraints necessitate dedicated analysis.

The present article aims to fill this gap by providing a 
comprehensive systematic literature review (SLR) that 
consolidates fragmented empirical evidence on acceleration 
metrics, the effectiveness of new testing architectures, and 
real-world security risks arising from the use of AI in the 
mobile SDLC.

To conduct this review in an organised manner and achieve 
its objectives, the following research questions were posed:

RQ1 (Taxonomy and Architecture): Which artificial 
intelligence approaches, models, also architectures (LLM, 
CV, RL) do they use in the different steps during mobile app 
development and test?

RQ2 (Effectiveness Metrics): In the literature, for use to 
determine how effective AI is at improving development 
speed, test coverage, defect detection, and team productivity, 
what quantitative empirical measures are reported?

RQ3 (Quality and Risks): What specific quality issues 
appear for reliability or maintainability, and what security 
issues surface for vulnerabilities or hallucinations when 
someone integrates AI-generated code and tests in the 
mobile ecosystem?

Materials and methods

This study follows the PRISMA 2020 guidelines, a systematic 
checklist, which ensures that the methods for selecting and 
analysing the literature are transparent, reproducible, and 
rigorous.

The scope and inclusion criteria were guided by the PICO 
framework, as detailed in Table 1.

Table 1. PICO criteria

Component Description and Detail
Population Mobile applications (Native Android/iOS, cross-platform Flutter/React Native), mobile development 

ecosystems, and QA processes in the mobile domain.
Intervention Artificial intelligence methods: large language models (LLMs), generative AI (GenAI), computer vision, 

deep learning, reinforcement learning (RL), and multi-agent systems.
Comparison Traditional methods: manual coding, manual testing, scripted automation (Appium, Selenium, Espresso), 

heuristic algorithms (Monkey testing), and existing non-AI practices.
Outcome Quantitative and qualitative metrics: reduced development time (time reduction), increased code coverage, 

bug detection rate, code quality, and security vulnerabilities.

The search for primary studies was conducted in the 
following electronic databases from January 1, 2019, to 
2025, to capture the latest advances in generative AI: IEEE 
Xplore, ACM Digital Library, Scopus, MDPI, as well as preprint 
repositories, given the rapid pace of industrial evolution. The 
search query was constructed using logical operators and 
adapted to the syntax of each database. The baseline query 
structure was:

(mobile application OR Android OR iOS OR app testing OR 
mobile development) AND (artificial intelligence OR AI 
OR machine learning OR deep learning OR LLM OR Large 
Language Model OR generative AI OR GitHub Copilot OR 
ChatGPT) AND (testing OR development OR acceleration 
OR productivity OR GUI testing OR test generation OR code 
generation)

Strict criteria were applied to filter results:

IC1:•	  Studies published in English in 2019–2025.

IC2:•	  Works containing empirical data (experiments, 

case studies, practitioner surveys) on AI use in mobile 
development or testing.

IC3:•	  Articles proposing new AI-agent architectures or 
methodologies (e.g., ScenGen, AutoQALLMs).

IC4:•	  Systematic literature reviews and mapping studies 
on adjacent topics for contextualization.

The exclusion criteria were as follows:•	

EC1:•	  Articles unrelated to the mobile domain (web-only 
or desktop-only), except foundational code-generation 
works applicable across domains.

EC2:•	  Marketing materials and white papers without 
methodological descriptions, short abstracts (less than 
3 pages).

EC3: •	 Duplicate texts (e.g., preprint and subsequently 
published journal article, only the latest version 
retained).

EC4:•	  Studies in which an AI (e.g., recommender system) 
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is embedded into an application (the AI is an application 
feature, not a development/testing tool)

Identification and full-text screening stages of the selection 
process are detailed and illustrated in Figure 1.

Figure 1. PRISMA Flow Diagram

To assess the credibility of selected studies, an adapted checklist based on the recommendations in [7] was used. The 
checklist included the following criteria:

QA1 (Goals):•	  Are the study goals and research questions clearly formulated?

QA2 (Context):•	  Is the context adequately described (AI models used, programming language versions, test applications)?

QA3 (Design):•	  Is the design appropriate to address RQs (e.g., sample size, control group)?

Each study was rated on a 0-1 scale (0 = does not meet, 0.5 = partially meets, 1 = fully meets) in 5 categories, and a score of 
3 out of 5 was used as the cut-off to ensure high evidentiary quality of the included studies.

Results
The analysis of 28 selected studies revealed fundamental changes in approaches to developing mobile software. Results are 
grouped in accordance with the research questions.

RQ1: Taxonomy and Architecture of AI in the mobile SDLC

The contemporary landscape of AI tools in mobile development can be classified along two dimensions: task type (Code 
Generation vs. Testing) and agent architecture (Reactive vs. Cognitive).

Within the category of generative assistants, large language models (LLMs) trained on massive code corpora dominate. The 
principal paradigm is Text-to-Code. Table 2 provides a comparative analysis of code generation tools for mobile platforms. 
Table 2 illustrates a comparative analysis of code generation tools for mobile platforms.

Table 2. Comparative analysis of code generation tools for mobile platforms

Tool Base Model Core Capabilities Mobile-Specific Notes (Findings) Source
GitHub Copilot OpenAI 

Codex / 
GPT-4

Line completion, function 
generation from comments, 
and chat interface.

High effectiveness for Kotlin/Java and React Native. 
Lower accuracy for Swift/SwiftUI due to Apple’s 
closed ecosystem and a smaller volume of open-
source training data.

[8]

ChatGPT 
(OpenAI)

GPT-3.5 / 
GPT-4o

Solving algorithmic tasks, 
documentation generation, 
refactoring, and code 
explanation.

Higher code correctness (65.2%) vs. Copilot 
(46.3%) on isolated tasks, but requires context 
switching (copy-paste).

[9]
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Amazon 
CodeWhisperer

Proprietary 
LLM

Security-oriented, AWS 
integration.

Shows lower technical debt in generated code 
compared with competitors.

[9]

AlphaCode / 
Gemini

DeepMind 
models

Solving complex logic tasks. Strong potential for generating complex algorithmic 
structures, but currently less integrated into IDE 
workflows for mobile development.

[10]

In testing, an evolution is observed from simple Monkey 
testers (random taps) to sophisticated multi-agent 
systems. According to the taxonomy proposed in [11], three 
generations of agents are distinguished.

The first generation of AI approaches in mobile GUI testing 
and automation is typically described as single-agent 
systems. Such solutions include, for example, Humanoid and 
GPTDroid. Their architectural concept is that a single model, 
generally built on deep learning methods or early versions of 
large language models, receives the current GUI state as input, 
in the form of a screenshot or an XML representation, and 
predicts exactly one following action. However, this scheme 
has fundamental limitations: the agent lacks a stable memory 
of previous steps, thereby performing poorly in multi-step 
scenarios such as adding an item to the cart and paying, and 
exhibiting a tendency to loop, repeatedly executing similar 
actions without progressing toward the goal.

The second generation is associated with multi-agent 
systems in which cognitive functions are partitioned among 
specialised agents. Examples include AutoQALLMs [12] and 
ScenGen [13]; the multi-agent paradigm is regarded as the 
most promising in the current literature. In the ScenGen 
architecture, the central role is played by the Observer, 
responsible for interface perception. It utilises multimodal 
models, such as GPT-4V, to transform the application’s 
visual state into a semantic description. Importantly, this 
concerns not pixel recognition per se, but the construction 
of an interpretation at the level of this is a login screen; the 
button is inactive until a password is entered, which reduces 
the system’s domain knowledge dependency [13]. Based on 
this description, the Decider performs planning: it aligns 
the current state provided by the Observer with the test 
goal, i.e., the test scenario, and applies a chain of reasoning 
(Chain-of-Thought) to select the next step. The Executor 
then translates a high-level command, such as press the ‘Log 
in’ button, into low-level driver code, i.e., a concrete action 
implemented via coordinates or element identifiers. The 
Supervisor performs result validation: if the screen does not 
change after the button press or an error occurs, it informs 
the Decider that the plan must be adjusted [13]. Finally, the 
Recorder maintains an action log in contextual memory, 
enabling the system to adapt within a session through in-
context learning.

The third generation is commonly associated with plan-then-
act architectures, where an agent first constructs a complete, 
high-level plan to achieve its goal and then executes it, 
dynamically correcting steps as deviations occur. AppAgent 
can be cited as an example. The key rationale is that this 

approach reduces the number of calls to the large language 
model at each step, thereby lowering token consumption and 
accelerating execution, as a substantial portion of reasoning 
is shifted to the pre-planning phase, making execution more 
communication-efficient with the model.

Beyond test generation, AI methods are applied to narrow 
but critical automation tasks that directly affect test-run 
stability and the operational efficiency of testing processes.

PopSweeper is a computer-vision-based tool designed 
to detect and close blocking pop-up windows such as 
advertising overlays, app-rating prompts, and system 
permission dialogues [14]. The solution is based on an 
object detection approach that identifies closing controls, for 
example, an X button or close. Detection accuracy is reported 
to reach 91.7%, and the tool thereby eliminates one of the 
most common causes of instability in automated tests, where 
unexpected pop-ups interrupt the scenario and lead to false 
failures.

EncrePrior is a system oriented toward prioritising bug 
reports originating from crowdsourced testing [15]. It 
analyses screenshots associated with defects, clusters them 
by visual similarity, and extracts unique issues, reducing the 
share of repetitive or duplicate reports. As a result, triage 
efficiency increases; the original description reports a 15.6% 
improvement in efficiency.

RQ2: Acceleration and Effectiveness Metrics

Empirical data collected in 2023–2025 studies enable a 
quantitative characterisation of the effect of AI adoption, 
including acceleration of development and code migration. 
The influence of AI assistants on coding speed is documented 
in both controlled experiments and industrial cases, yielding 
conclusions that are practically comparable.

According to GitHub research, developers using Copilot 
complete typical tasks, such as creating an HTTP server, 55% 
faster [16]. The same study notes an overall acceleration in 
product delivery, with the Time-to-Market metric improving 
by 30% [16]. A reduction in routine work is additionally 
emphasised: AI can generate up to 30–40% of code volume 
for experienced developers [16]. The most pronounced effect 
is observed where template-driven activity predominates, 
including generation of boilerplate code, tests, and 
documentation; in these categories, acceleration reaches 
50% [17].

A separate highlight is the Airbnb case associated with code 
migration [18], which is frequently cited as a demonstration 
of the effectiveness of LLMs in modernising an existing 
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codebase. In this example, 3500 test files were migrated 
from the Enzyme framework to React Testing Library. The 
traditional engineering effort estimate was 1.5 years, whereas 
the AI-based solution relied on an LLM pipeline and iterative 
prompt refinement. The task was completed in 6 weeks, with 
97% of files migrated automatically and only 3% requiring 
manual intervention [18]. This case illustrates AI’s potential 
not only for accelerating greenfield development but also for 
large-scale transformation of existing software.

AI transforms testing from script checking into behaviour 
exploration. Table 3 shows the evolution from random and 

brittle testing (Monkey and Appium scripts) toward more 
intelligent approaches (DL and LLM) that improve coverage 
and the ability to discover unique crashes: Stoat yields +17–
31% over baseline coverage and 3× more unique failures, 
while LLM solutions (ScenGen, AutoQALLMs) provide high 
scenario/element coverage and better detect logical errors. 
At the same time, maximum robustness to UI changes is 
achieved by LLM approaches due to semantic adaptation and 
test repair mechanisms (e.g., RegEx + LLM), whereas scripted 
scenarios remain most vulnerable. Table 3 illustrates the 
comparative effectiveness of testing methods.

Table 3. Comparative effectiveness of testing methods

Method / Tool Code Coverage Unique Crash Detection Robustness to UI Changes Source
Monkey (Random) Baseline level Low (gets stuck in simple loops) High (independent of UI 

structure)
[19]

Scripted (Appium) High (for predefined 
scenarios)

Low (only expected failures) Low (fragile) [13]

Deep Learning (Stoat) +17–31% vs. baseline 3× more than Monkey/Sapienz Medium [19]
LLM-Based (ScenGen) High scenario coverage High (logical errors) Very high (semantic 

adaptation)
[13]

AutoQALLMs 96% of UI elements Comparable to manual (98%) High (RegEx + LLM repair) [12]

Scenario accuracy is one of the key indicators for evaluating 
whether an AI system can correctly execute logical test 
scenarios, i.e., make decisions based on interface state and 
the target test intent. In study [11], ScenGen demonstrated 
high Logical Decision-Making Accuracy across several 
applications with differing interface complexity. For the 
Music application, characterised by a simple interface, 
accuracy was 100%, and an analogous 100% result was 
obtained on the Photo application. For the Email application, 
where scenarios are complicated by forms, attachments, and 
a larger number of contextual states, accuracy was 97.44%. 
On the Note application, featuring hidden menus and less 
obvious transitions, the metric decreased to 90.14% [11]. 
Collectively, these values indicate that multi-agent systems 
can address tasks requiring the interpretation of business 
logic and contextual conditions, approaching a level of 
scenario understanding that was previously only practical 
through manual testing.

At the same time, empirical evidence indicates that AI 
effectiveness is uneven depending on the development 
platform [10]. For Android, where Kotlin and Java are the 
primary languages, high generation accuracy is reported, 
attributed to a larger volume of training data and publicly 
available examples. For cross-platform stacks such as Flutter 
and React Native, very high effectiveness is documented, since 
the declarative nature of UI code, especially in Flutter, aligns 
well with how LLMs structure output code. It is additionally 
stated that frame times and overall performance of Flutter 
applications generated with AI remain competitive relative 
to native solutions [20]. For iOS, where Swift and SwiftUI are 
used, reduced accuracy is described: large language models 

more frequently hallucinate by suggesting nonexistent 
SwiftUI modifiers or using outdated syntax, thereby 
increasing the need for careful review and amplifying the 
role of iOS developers’ oversight [10].

RQ3: Quality Issues and Security Risks

Against the backdrop of improved speed metrics, the 
literature analysis documents a concerning shift in the quality 
and security of AI-generated code. This concerns not merely 
isolated implementation defects, but a systemic problem 
appropriately denoted a trust crisis: increased productivity 
is accompanied by erosion of guarantees of correctness, 
verifiability, and predictability.

First, studies show that AI in code generation often 
prioritises functional correctness at the expense of security. 
In particular, according to [21], 51.42% of LLM-generated 
code contains known vulnerabilities classified via CWE. This 
estimate does not appear to be an isolated anomaly: across 
CWE scenarios, the share of vulnerable programs reaches 
approximately 40–44% depending on the selected slice, and 
for CWE-79 (Cross-Site Scripting) the authors separately 
report that among Copilot’s top-scoring variants no 
vulnerabilities are observed (0%), whereas in the overall set 
of variants vulnerability is present in 19% of cases [22]. Such 
heterogeneity underscores that a model’s best answer and 
its typical behaviour can diverge statistically, complicating 
safe deployment practice: stable guarantees that a successful 
example reflects the norm are not provided.

Second, the literature indicates persistent security blind 
spots arising from the induction of frequent patterns from 
training data. AI may propose weak hashing algorithms, 
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such as MD5, or hardcode API keys, as these patterns are 
common in example corpora and educational materials [23]. 
As a result, the model reproduces recognisable solutions 
that appear workable in the short term, but in fact create an 
attack surface and degrade risk controllability.

Third, a particular form of technical debt emerges: even 
when code appears correct, it can be redundant, bloated, and 
poorly maintainable. Developers report that AI-generated 
code often complicates maintenance, and in [24], respondents 
explicitly indicated the need to modify generated fragments 
prior to use. This should be interpreted not as a cosmetic 
adjustment, but as a symptom: generation accelerates 
artefact production while simultaneously increasing future 
work volume for validation, refactoring, and conformance to 
quality standards.

A distinct category of risks is formed by hallucinations 
in the coding context. Here, the problem is not novice 
mistakes, but the generation of syntactically valid yet 
functionally nonexistent constructs that appear plausible 
and may therefore pass initial attention-based checks. 
A particularly dangerous manifestation is dependency 
hallucination (Hallucinated Packages, Slopsquatting): the 
model may recommend importing libraries with realistic 
names that do not exist in the ecosystem, such as fast-async-
auth-helper. Adversaries may monitor such hallucinations, 
register packages with corresponding names, and embed 
malicious code, converting a generation error into a supply-
chain compromise channel. Study [25] shows that 21.7% of 
generated dependencies are hallucinations. This indicates 

that the risk is not peripheral, but statistically significant, 
where isolated cases can escalate into large-scale events 
under operational scaling.

Additionally, LLMs exhibit a tendency to create synthetic 
abstractions: instead of utilising standard libraries and 
accepted practices, they invent proprietary mini-security 
frameworks, creating an illusion of protection without 
verifiable guarantees [26]. Such pseudo-standardisation 
is hazardous precisely because it produces an appearance 
of solution completeness: the code looks structured and 
engineered, yet its properties are not confirmed by industry 
audits and do not rely on a mature ecosystem.

Finally, mobile platforms intensify specific risks. API 
obsolescence is particularly acute: models trained on data up 
to 2023 often generate code using deprecated Android APIs, 
resulting in compatibility issues with newer OS versions 
[27]. In this context, a generation error becomes not only a 
vulnerability or a bug, but also a source of operational costs, 
since it requires additional adaptation to current SDKs and 
platform policies.

In parallel, the limitations of On-Device AI are documented. 
Attempts to run testing LLM agents directly on devices, 
driven by concerns for privacy and autonomy, face hardware 
constraints. Small models exhibit a significant drop in 
reasoning capability compared to large-scale cloud models, 
rendering them currently unsuitable for complex testing 
scenarios [28]. Table 4 illustrates a comparative analysis 
of key risks in LLM-based code generation for mobile 
platforms.

Table 4. Comparative analysis of key risks in LLM-based code generation for mobile platforms

Phenomenon 
/ Risk Area

What it looks like in AI-
generated code

Quantitative / Empirical 
signal 

Mobile-specific notes Source

Known 
vulnerabilities 
(CWE) in 
generated code

Functional correctness is often 
prioritised over security, leading 
to insecure implementations.

51.42% of LLM-generated 
code contained known CWE 
vulnerabilities.

General (not platform-specific 
in this finding).

[21]

Hallucinated 
packages / 
Slopsquatting

Suggested dependencies may 
not exist; attackers can register 
those names and inject malware 
into the supply chain.

21.7% of generated depen-
dencies were hallucinations.

High relevance to mobile build/
dependency ecosystems; no 
platform split reported in text.

[25]

Deprecated 
Android 
APIs (API 
obsolescence)

Generation relies on deprecated 
Android APIs, creating 
compatibility issues on newer 
OS versions.

Qualitative finding (models 
trained on data up to 2023 
often output deprecated 
APIs).

Android-specific compatibility 
risk with newer OS versions.

[27]

On-device LLM 
limitations for 
testing agents

Small on-device models lack 
the reasoning capacity of cloud 
models, which limits their 
application in complex testing 
scenarios.

Qualitative finding: significant 
reasoning drop; not suitable 
yet for complex tests.

Mobile/on-device constraints 
are driven by privacy/offline 
goals, but are limited by 
hardware.

[28]

Thus, the mobile contour faces dual pressure: on one hand, the demand for autonomy and privacy; on the other, insufficient 
computational resources to sustain the required level of reasoning in quality and security assurance tasks.
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Discussion
The conducted review indicates a fundamental shift in the 
profession. Whereas previously the developer’s primary skill 
was knowledge of syntax and algorithms for writing code 
from scratch, in the GenAI era, the key competence becomes 
verification. The developer is transformed into an architect 
who formulates the task (prompt), and an auditor who 
critically evaluates the output. The degree of topic maturity 
is considered below.

First, the review results should be interpreted in the 
context of the research field’s maturity and the limitations 
of the current evidence base. The tertiary study by Zein 
et al. shows that mobile engineering has accumulated a 
substantial number of SLR/mapping works; however, they 
are frequently fragmented by subdomain (QA, architecture, 
UX, security) and heterogeneous in methodological rigour, 
complicating direct comparison of effects across studies 
and the transferability of conclusions to industry [2]. In 
parallel, survey studies on factors impeding automated 
testing adoption report that barriers are not only technical 
but also organisational (maintenance cost of computerised 
tests, competence deficits, resistance to process change) [3], 
and a systematic review of mobile automation framework 
applicability confirms brittleness and high script-test 
maintenance costs under UI evolution [4]. Collectively, in 
baseline mobile automation and adoption challenges, the 
literature suffices to assert structural limitations of traditional 
approaches, against which AI appears as a mechanism for 
reducing cognitive and operational costs. At the same time, 
gaps remain: there are insufficient comparable, multi-site 
industrial studies that simultaneously account for application 
type, CI/CD maturity, team composition, and real support 
costs (TCO). Consequently, AI effects at the organisational 
or mobile product portfolio level are described more weakly 
than at the level of individual tools and cases.

Second, the literature on AI-assisted programming supports 
the productivity-growth thesis, while simultaneously 
indicating conditions under which this effect is stable and 
economically meaningful. A review of NLG/NLU big code 
systems systematises why LLMs perform best in template 
generation, transformations, and context explanation [5]. 
Empirical Copilot assessments show that the applicability 
of suggestions and time savings are heterogeneous and 
depend on the task context [8]. Comparative studies of 
code quality across Copilot/CodeWhisperer/ChatGPT 
complement the picture by showing that acceleration must 
be evaluated jointly with qualitative artifact characteristics 
(readability, standards compliance, maintainability), since 
these determine total cost of ownership at subsequent stages 
[9]; moreover, comparative evaluation for Swift generation 
emphasizes platform asymmetry and elevated error risks 
in less data-rich ecosystems [10]. With respect to AI impact 
on micro-productivity (task completion speed) and quality 
variability, the literature base is sufficient for substantiated 

conclusions; however, notable gaps remain specifically for 
the mobile domain: limited numbers of studies measure LLM 
impact on mobile-specific concerns (architectural patterns, 
performance/energy consumption, lifecycle correctness, 
accessibility, store-policy compliance), and long-term 
longitudinal data are lacking on how AI-assisted code affects 
technical debt and defectiveness across multiple releases 
rather than only at the moment of generation.

Third, the discussion of security and robustness risks 
demonstrates that speed increases without strengthening 
trust boundaries can produce systemic debt, particularly 
when sensitive to the mobile attack surface. Large-scale 
measurements of LLM generation security and evaluations 
of Copilot’s contribution to vulnerabilities show that the 
probability of insecure implementations is statistically 
material and requires process-level institutionalisation of 
secure-by-default (SAST/DAST, secret scanning, dependency 
policies) [21, 22, 23]. The hallucinated packages risk expands 
the threat model to the supply chain, where a generation 
error can be monetised via the registration of dependency 
lookalikes [25]. Studies of user adaptation to hallucinations 
and privacy challenges emphasise that robustness becomes 
an organisational practice rather than a tool property [6]. 
Survey data on the applicability of AI assistants indicate 
that a significant share of code requires refinement before 
industrial use, shifting the economics of gains toward 
verification costs [24, 26]. On mobile platforms, the Android 
API evolution and compatibility problem is additionally 
critical [27], and edge-efficient LLM limitations support the 
conclusion of the necessity of hybrid architectures (on-device 
execution and cloud reasoning) [28]. Regarding general AI-
code risks and supply-chain concerns, the contemporary 
literature provides sufficient basis to justify mandatory 
strengthened controls; however, mobile-ecosystem-specific 
gaps persist: comparatively few studies address Android/
iOS-characteristic vulnerabilities (IPC, deep links, WebView, 
keychain/keystore, certificate pinning), privacy under 
transmission of UI data (screenshots/accessibility trees) to 
cloud LLMs, and practices for secure prompting and data 
governance in mobile teams, where regulatory and store 
requirements are particularly strict.

The data indicate that the largest productivity gains accrue 
to senior developers who can quickly recognise an error or 
vulnerability in AI suggestions. For juniors, AI may become 
a trap of confident incompetence, where syntactically 
correct but logically flawed code is accepted uncritically. 
Industry faces a classic trade-off. AI adoption can radically 
reduce Time-to-Market, which is critical in a competitive 
mobile environment. However, this gain may be negated by 
deferred penalties in the form of security incidents and the 
accumulation of technical debt. Organisations adopting AI 
must revise CI/CD processes. Human-only code review is 
insufficient, since the volume of generated code increases. 
Integration of automated SAST/DAST tools is required, 
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specifically configured to detect patterns characteristic of AI 
errors (hallucinated packages, hardcoded secrets).

Current advances in multi-agent systems (ScenGen) 
demonstrate that automated testing has approached 
the level of human understanding in the sense that it 
can interpret interface states and consistently execute 
meaningful verification actions guided by context and 
expected system behaviour. At the same time, such progress 
does not imply that corresponding approaches have become 
technologically inexpensive or seamlessly applicable at scale: 
key constraints remain token costs and latency arising from 
transmitting screenshots to cloud LLMs, hindering pervasive 
deployment.

Against this background, the most plausible development 
direction appears to be hybrid architectures in which 
computational roles and temporal requirements are 
stratified across levels. The cloud contour can be viewed as 
a heavy reasoning layer: a powerful model forms the testing 
strategy and assumes analysis of complex failures, solving 
tasks where generalisation, hypothesis construction, and 
interpretation of non-standard situations are essential.

At the device level, by contrast, fast execution is naturally 
described: a lightweight local model performs navigation 
and simple checks in real-time without requiring network 
connectivity. In such a distribution, emphasis shifts toward 
the autonomous execution of frequently occurring and fast 
actions, while rare, expensive, and cognitively intensive 
operations are delegated to the cloud, where a more powerful 
reasoning apparatus is available.

Conclusion
The conducted systematic literature review demonstrates 
that, between 2019 and 2025, mobile development and 
testing underwent a qualitative shift toward the generative 
AI paradigm and multi-agent architectures. The selection of 
28 studies from 638 identified records, along with quality 
assessment using an adapted Sjøberg checklist, establishes 
an evidentiary framework for the review’s conclusions. 
This is not a set of disparate technological observations, 
but a synthesis of empirical data comparable in terms of 
acceleration, effectiveness, and risk metrics.

Regarding development acceleration, the SLR results 
document a stable effect from adopting AI assistants, primarily 
manifesting in template code generation, refactoring, and 
artefact transformation. The literature provides quantitative 
estimates of up to 55% acceleration in coding for typical 
tasks, and Time-to-Market improvements on the order of 
30%, while noting that a substantial share of routine code 
volume can be generated by AI. Particularly illustrative is 
the industrial legacy migration case: the transition of 3,500 
test files from Enzyme to React Testing Library, which, under 
traditional estimates, could have taken up to 1.5 years, was 
completed in 6 weeks with the automated migration of 97% 
of files. At the same time, the review emphasises platform 

and language heterogeneity: the highest performance is 
observed for Kotlin/Java and cross-platform stacks (Flutter/
React Native), whereas Swift/SwiftUI generation quality 
is reduced, associated with training-data scarcity and 
ecosystem closure.

In testing, the systematic synthesis indicates a transition 
from deterministic, brittle scripted scenarios to agent-
based approaches capable of semantic interface perception 
and planning. Multi-agent systems such as ScenGen and 
AutoQALLMs are characterised as the most promising 
architectural generation, wherein GUI perception, action 
selection, execution, and result revision are divided into 
specialised roles, and context is maintained via action 
memory. Empirically, this is expressed in code-coverage 
increases of 20–30% compared to traditional tools, and in 
high accuracy for executing complex scenarios. For ScenGen, 
Logical Decision-Making Accuracy values range from 90.14% 
to 100%, depending on the application. An important maturity 
element is also provided by visual self-healing mechanisms, 
as well as specialised solutions addressing operational 
causes of run instability. These solutions include the closure 
of blocking pop-up windows with 91.7% detection accuracy 
and a 15.6% increase in the efficiency of crowdsourced bug-
report processing via visual clustering.

The key contribution of this SLR is not only the documentation 
of acceleration, but also the systematic fixation of quality and 
security risks that scale alongside generation. The literature 
describes a trust crisis in which productivity growth is 
accompanied by erosion of correctness and verifiability 
guarantees. The most stringent signal concerns security: 
according to included studies, up to 51.42% of LLM-generated 
code contains known CWE-classified vulnerabilities, and 
aggregate scenario-set estimates indicate a range of 40–44% 
vulnerable implementations. An additional, fundamentally 
novel threat class is formed by dependency hallucinations 
(hallucinated packages / slopsquatting): the share of 
nonexistent dependencies in generated recommendations 
reaches 21.7%, turning a generation error into a practical 
supply-chain attack vector. The review also notes 
reproduction of unsafe frequent patterns (e.g., weak hashes 
or hardcoded secrets), growth of specific technical debt due 
to bloated and poorly maintainable fragments, and, for the 
mobile domain, an additional API obsolescence problem, 
whereby models trained on data up to 2023 tend to propose 
deprecated Android APIs, increasing operational costs and 
compatibility risks.

Collectively, the systematic literature review substantiates 
the conclusion that the developer’s role is transforming from 
primary code production toward verification, architectural 
oversight, and security auditing, as well as management of the 
probabilistic nature of generative outputs. Empirical evidence 
confirms that AI accelerates the mobile SDLC and increases 
the intellectual capacity of testing; however, the same body of 
studies indicates that adoption cannot be treated as a neutral 
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tool substitution: it requires institutionalization of trust 
contours, strengthening of security protocols, and revision 
of quality assurance approaches, where deterministic checks 
are complemented by practices designed for statistical 
variability, hallucinations, and synthetic vulnerabilities.
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