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The article presents a systematic literature review examining how artificial intelligence methods (LLM/GenAl, computer
vision, deep learning, and multi-agent architectures) accelerate mobile application development and testing within the
mobile SDLC. The objective is to address a deficit of domain-specific systematisation for mobile engineering and to answer
three classes of questions: which Al approaches are applied across development and QA stages, which acceleration and
efficiency metrics are empirically substantiated, and which quality/security risks accompany the adoption of generative
tools. The relevance is driven by the growing complexity of mobile ecosystems and the limited scalability of manual
testing and script-based automation, particularly due to brittleness under GUI changes. The novelty of the review lies in
synthesising evidence from 28 selected studies from 2019 to 2025, with an explicit focus on mobile-specific constraints,
and in juxtaposing speed gains against a trust contour. The principal findings are as follows: Al assistants demonstrate a
substantial acceleration of routine tasks (up to ~55%) and a reduction in timelines for large-scale migrations. In testing, a
transition toward LLM agents is observed, enabling high coverage at both scenario and element levels, as well as resilience
to Ul evolution. Concurrently, a trust crisis is documented due to a significant share of vulnerabilities in generated code,
dependency hallucinations, and increased technical debt, necessitating the institutionalisation of verification practices
and secure-by-default principles. The article is intended to be beneficial to software engineering researchers and to mobile
development/QA practitioners integrating GenAl into workflows.
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INTRODUCTION resources for maintenance and updates [4]. In development,

Over the past decade, the mobile app ecosystem has evolved a shortage of qualified personnel exacerbates technical debt,

from the simple development of native apps to advanced
ecosystems based on cloud computing, the Internet of
Things, and embedded Al. Analysts expect revenue from Al-
enabled mobile apps to increase to $26.3 billion by 2030,
growing at a compound annual growth rate (CAGR) of 38.7%
over this period [1]. An exponential increase in complexity
accompanies this growth: developers must maintain
functional parity between Android and iOS platforms, adapt
interfaces to hundreds of screen resolutions, and ensure data
security under continuously evolving threats [2].

Conventional development and quality assurance (QA)
methodologies are approaching the limits of their scalability.
Manual testing, which still constitutes a substantial share of
processes in the mobile industry, is labour-intensive, slow,
and susceptible to human error [3]. Script-based automated
testing (e.g., using Appium or Espresso) suffers from the
brittleness problem: minor changes to the graphical user
interface (GUI) can cause test failures, requiring significant

compelling teams to automate routine cognitive tasks.

The emergence and rapid development of large language
models (LLMs) and generative artificial intelligence
(GenAl) in 2022-2025 marked the onset of a new era in
software engineering. Tools such as GitHub Copilot, Amazon
CodeWhisperer, and specialised testing agents provide
not only automation of repetitive actions but also partial
autonomy in decision-making.

Unlike traditional static code analysers or record-and-replay
tools, contemporary Al systems exhibit the capacity for
semantic contextual understanding [5]. They can also be used
to generate syntactically correct code from natural-language
descriptions (Text-to-Code), recognise and understand
screenshots, including interface components, as a human
would (Vision-based Testing), and autonomously plan and
execute complex user workflows, including robustness to
unexpected states and behaviours of the tested application.
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It is expected to solve the mobile development trilemma of
speed, quality, and cost simultaneously. However, practice
indicates that Al adoption is not risk-free. The phenomena
of hallucinations and the production of vulnerable code
introduce new challenges for the industry, requiring rigorous
scientific analysis [6].

Despite the active growth of publications on Al applications
in software engineering, a clear deficit remains in systematic
studies focused specifically on the mobile domain. Most
existing reviews address either general issues of LLM
adoption in SE or narrow aspects of GUI testing [2]. Mobile
development specificity, device resource constraints, touch
interaction characteristics, stringent UX requirements, and
security constraints necessitate dedicated analysis.

The present article aims to fill this gap by providing a
comprehensive systematic literature review (SLR) that
consolidates fragmented empirical evidence on acceleration
metrics, the effectiveness of new testing architectures, and
real-world security risks arising from the use of Al in the
mobile SDLC.

To conduct this review in an organised manner and achieve
its objectives, the following research questions were posed:

Table 1. PICO criteria

RQ1 (Taxonomy and Architecture): Which artificial
intelligence approaches, models, also architectures (LLM,
CV, RL) do they use in the different steps during mobile app
development and test?

RQ2 (Effectiveness Metrics): In the literature, for use to
determine how effective Al is at improving development
speed, test coverage, defect detection, and team productivity,
what quantitative empirical measures are reported?

RQ3 (Quality and Risks): What specific quality issues
appear for reliability or maintainability, and what security
issues surface for vulnerabilities or hallucinations when
someone integrates Al-generated code and tests in the
mobile ecosystem?

MATERIALS AND METHODS

This study follows the PRISMA 2020 guidelines, a systematic
checklist, which ensures that the methods for selecting and
analysing the literature are transparent, reproducible, and
rigorous.

The scope and inclusion criteria were guided by the PICO
framework, as detailed in Table 1.

Component |Description and Detail

Population | Mobile applications (Native Android/iOS, cross-platform Flutter/React Native), mobile development
ecosystems, and QA processes in the mobile domain.

Intervention | Artificial intelligence methods: large language models (LLMs), generative Al (GenAl), computer vision,
deep learning, reinforcement learning (RL), and multi-agent systems.

Comparison | Traditional methods: manual coding, manual testing, scripted automation (Appium, Selenium, Espresso),
heuristic algorithms (Monkey testing), and existing non-Al practices.

Outcome Quantitative and qualitative metrics: reduced development time (time reduction), increased code coverage,
bug detection rate, code quality, and security vulnerabilities.

The search for primary studies was conducted in the
following electronic databases from January 1, 2019, to
2025, to capture the latest advances in generative Al: IEEE
Xplore, ACM Digital Library, Scopus, MDP]I, as well as preprint
repositories, given the rapid pace of industrial evolution. The
search query was constructed using logical operators and
adapted to the syntax of each database. The baseline query
structure was:

(mobile application OR Android OR iOS OR app testing OR
mobile development) AND (artificial intelligence OR Al
OR machine learning OR deep learning OR LLM OR Large
Language Model OR generative Al OR GitHub Copilot OR
ChatGPT) AND (testing OR development OR acceleration
OR productivity OR GUI testing OR test generation OR code
generation)

Strict criteria were applied to filter results:
e IC1: Studies published in English in 2019-2025.

e IC2: Works containing empirical data (experiments,

case studies, practitioner surveys) on Al use in mobile
development or testing.

e IC3: Articles proposing new Al-agent architectures or
methodologies (e.g., ScenGen, AutoQALLMs).

e IC4: Systematic literature reviews and mapping studies
on adjacent topics for contextualization.

e The exclusion criteria were as follows:

e EC1: Articles unrelated to the mobile domain (web-only
or desktop-only), except foundational code-generation
works applicable across domains.

e EC2: Marketing materials and white papers without
methodological descriptions, short abstracts (less than
3 pages).

e EC3: Duplicate texts (e.g., preprint and subsequently
published journal article, only the latest version
retained).

e EC4: Studies in which an Al (e.g., recommender system)
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is embedded into an application (the Al is an application Identification and full-text screening stages of the selection

feature, not a development/testing tool) process are detailed and illustrated in Figure 1.
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Figure 1. PRISMA Flow Diagram

To assess the credibility of selected studies, an adapted checklist based on the recommendations in [7] was used. The
checklist included the following criteria:

¢ QA1 (Goals): Are the study goals and research questions clearly formulated?
¢ QA2 (Context): Is the context adequately described (Al models used, programming language versions, test applications)?
¢ QA3 (Design): Is the design appropriate to address RQs (e.g., sample size, control group)?

Each study was rated on a 0-1 scale (0 = does not meet, 0.5 = partially meets, 1 = fully meets) in 5 categories, and a score of
3 out of 5 was used as the cut-off to ensure high evidentiary quality of the included studies.

RESULTS

The analysis of 28 selected studies revealed fundamental changes in approaches to developing mobile software. Results are
grouped in accordance with the research questions.

RQ1: Taxonomy and Architecture of Al in the mobile SDLC

The contemporary landscape of Al tools in mobile development can be classified along two dimensions: task type (Code
Generation vs. Testing) and agent architecture (Reactive vs. Cognitive).

Within the category of generative assistants, large language models (LLMs) trained on massive code corpora dominate. The
principal paradigm is Text-to-Code. Table 2 provides a comparative analysis of code generation tools for mobile platforms.
Table 2 illustrates a comparative analysis of code generation tools for mobile platforms.

Table 2. Comparative analysis of code generation tools for mobile platforms

Tool Base Model | Core Capabilities Mobile-Specific Notes (Findings) Source
GitHub Copilot | OpenAl Line completion, function | High effectiveness for Kotlin/Java and React Native. | [8]
Codex / generation from comments, | Lower accuracy for Swift/SwiftUIl due to Apple’s
GPT-4 and chat interface. closed ecosystem and a smaller volume of open-
source training data.
ChatGPT GPT-3.5/ Solving algorithmic tasks, | Higher code correctness (65.2%) vs. Copilot|[9]
(OpenAl) GPT-40 documentation generation, | (46.3%) on isolated tasks, but requires context
refactoring, and code | switching (copy-paste).
explanation.
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Amazon Proprietary | Security-oriented, AWS | Shows lower technical debt in generated code |[9]

CodeWhisperer | LLM integration. compared with competitors.

AlphaCode / DeepMind | Solving complex logic tasks. | Strong potential for generating complex algorithmic | [10]

Gemini models structures, but currently less integrated into IDE
workflows for mobile development.

In testing, an evolution is observed from simple Monkey
testers (random taps) to sophisticated multi-agent
systems. According to the taxonomy proposed in [11], three
generations of agents are distinguished.

The first generation of Al approaches in mobile GUI testing
and automation is typically described as single-agent
systems. Such solutions include, for example, Humanoid and
GPTDroid. Their architectural concept is that a single model,
generally built on deep learning methods or early versions of
large language models, receives the current GUI state asinput,
in the form of a screenshot or an XML representation, and
predicts exactly one following action. However, this scheme
has fundamental limitations: the agent lacks a stable memory
of previous steps, thereby performing poorly in multi-step
scenarios such as adding an item to the cart and paying, and
exhibiting a tendency to loop, repeatedly executing similar
actions without progressing toward the goal.

The second generation is associated with multi-agent
systems in which cognitive functions are partitioned among
specialised agents. Examples include AutoQALLMs [12] and
ScenGen [13]; the multi-agent paradigm is regarded as the
most promising in the current literature. In the ScenGen
architecture, the central role is played by the Observer,
responsible for interface perception. It utilises multimodal
models, such as GPT-4V, to transform the application’s
visual state into a semantic description. Importantly, this
concerns not pixel recognition per se, but the construction
of an interpretation at the level of this is a login screen; the
button is inactive until a password is entered, which reduces
the system’s domain knowledge dependency [13]. Based on
this description, the Decider performs planning: it aligns
the current state provided by the Observer with the test
goal, i.e,, the test scenario, and applies a chain of reasoning
(Chain-of-Thought) to select the next step. The Executor
then translates a high-level command, such as press the ‘Log
in’ button, into low-level driver code, i.e., a concrete action
implemented via coordinates or element identifiers. The
Supervisor performs result validation: if the screen does not
change after the button press or an error occurs, it informs
the Decider that the plan must be adjusted [13]. Finally, the
Recorder maintains an action log in contextual memory,
enabling the system to adapt within a session through in-
context learning,.

The third generation is commonly associated with plan-then-
act architectures, where an agent first constructs a complete,
high-level plan to achieve its goal and then executes it,
dynamically correcting steps as deviations occur. AppAgent
can be cited as an example. The key rationale is that this

approach reduces the number of calls to the large language
model at each step, thereby lowering token consumption and
accelerating execution, as a substantial portion of reasoning
is shifted to the pre-planning phase, making execution more
communication-efficient with the model.

Beyond test generation, Al methods are applied to narrow
but critical automation tasks that directly affect test-run
stability and the operational efficiency of testing processes.

PopSweeper is a computer-vision-based tool designed
to detect and close blocking pop-up windows such as
advertising overlays, app-rating prompts, and system
permission dialogues [14]. The solution is based on an
object detection approach that identifies closing controls, for
example, an X button or close. Detection accuracy is reported
to reach 91.7%, and the tool thereby eliminates one of the
most common causes of instability in automated tests, where
unexpected pop-ups interrupt the scenario and lead to false
failures.

EncrePrior is a system oriented toward prioritising bug
reports originating from crowdsourced testing [15]. It
analyses screenshots associated with defects, clusters them
by visual similarity, and extracts unique issues, reducing the
share of repetitive or duplicate reports. As a result, triage
efficiency increases; the original description reports a 15.6%
improvement in efficiency.

RQ2: Acceleration and Effectiveness Metrics

Empirical data collected in 2023-2025 studies enable a
quantitative characterisation of the effect of Al adoption,
including acceleration of development and code migration.
The influence of Al assistants on coding speed is documented
in both controlled experiments and industrial cases, yielding
conclusions that are practically comparable.

According to GitHub research, developers using Copilot
complete typical tasks, such as creating an HTTP server, 55%
faster [16]. The same study notes an overall acceleration in
product delivery, with the Time-to-Market metric improving
by 30% [16]. A reduction in routine work is additionally
emphasised: Al can generate up to 30-40% of code volume
for experienced developers [16]. The most pronounced effect
is observed where template-driven activity predominates,
including generation of boilerplate code, tests, and
documentation; in these categories, acceleration reaches
50% [17].

A separate highlight is the Airbnb case associated with code
migration [18], which is frequently cited as a demonstration
of the effectiveness of LLMs in modernising an existing
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codebase. In this example, 3500 test files were migrated
from the Enzyme framework to React Testing Library. The
traditional engineering effort estimate was 1.5 years, whereas
the Al-based solution relied on an LLM pipeline and iterative
prompt refinement. The task was completed in 6 weeks, with
97% of files migrated automatically and only 3% requiring
manual intervention [18]. This case illustrates Al’s potential
not only for accelerating greenfield development but also for
large-scale transformation of existing software.

Al transforms testing from script checking into behaviour
exploration. Table 3 shows the evolution from random and

Table 3. Comparative effectiveness of testing methods

brittle testing (Monkey and Appium scripts) toward more
intelligent approaches (DL and LLM) that improve coverage
and the ability to discover unique crashes: Stoat yields +17-
31% over baseline coverage and 3x more unique failures,
while LLM solutions (ScenGen, AutoQALLMs) provide high
scenario/element coverage and better detect logical errors.
At the same time, maximum robustness to Ul changes is
achieved by LLM approaches due to semantic adaptation and
test repair mechanisms (e.g., RegEx + LLM), whereas scripted
scenarios remain most vulnerable. Table 3 illustrates the
comparative effectiveness of testing methods.

Method / Tool Code Coverage Unique Crash Detection Robustness to Ul Changes | Source

Monkey (Random) Baseline level Low (gets stuck in simple loops) | High (independent of UI|[19]
structure)

Scripted (Appium) High (for predefined | Low (only expected failures) Low (fragile) [13]

scenarios)

Deep Learning (Stoat) | +17-31% vs. baseline | 3x more than Monkey/Sapienz | Medium [19]

LLM-Based (ScenGen) | High scenario coverage | High (logical errors) Very high (semantic | [13]
adaptation)

AutoQALLMs 96% of Ul elements Comparable to manual (98%) High (RegEx + LLM repair) [12]

Scenario accuracy is one of the key indicators for evaluating
whether an Al system can correctly execute logical test
scenarios, i.e., make decisions based on interface state and
the target test intent. In study [11], ScenGen demonstrated
high Logical Decision-Making Accuracy across several
applications with differing interface complexity. For the
Music application, characterised by a simple interface,
accuracy was 100%, and an analogous 100% result was
obtained on the Photo application. For the Email application,
where scenarios are complicated by forms, attachments, and
a larger number of contextual states, accuracy was 97.44%.
On the Note application, featuring hidden menus and less
obvious transitions, the metric decreased to 90.14% [11].
Collectively, these values indicate that multi-agent systems
can address tasks requiring the interpretation of business
logic and contextual conditions, approaching a level of
scenario understanding that was previously only practical
through manual testing.

At the same time, empirical evidence indicates that Al
effectiveness is uneven depending on the development
platform [10]. For Android, where Kotlin and Java are the
primary languages, high generation accuracy is reported,
attributed to a larger volume of training data and publicly
available examples. For cross-platform stacks such as Flutter
and React Native, very high effectiveness is documented, since
the declarative nature of Ul code, especially in Flutter, aligns
well with how LLMs structure output code. It is additionally
stated that frame times and overall performance of Flutter
applications generated with Al remain competitive relative
to native solutions [20]. For i0S, where Swift and SwiftUI are
used, reduced accuracy is described: large language models

more frequently hallucinate by suggesting nonexistent
SwiftUl modifiers or using outdated syntax, thereby
increasing the need for careful review and amplifying the
role of i0S developers’ oversight [10].

RQ3: Quality Issues and Security Risks

Against the backdrop of improved speed metrics, the
literature analysis documents a concerning shift in the quality
and security of Al-generated code. This concerns not merely
isolated implementation defects, but a systemic problem
appropriately denoted a trust crisis: increased productivity
is accompanied by erosion of guarantees of correctness,
verifiability, and predictability.

First, studies show that Al in code generation often
prioritises functional correctness at the expense of security.
In particular, according to [21], 51.42% of LLM-generated
code contains known vulnerabilities classified via CWE. This
estimate does not appear to be an isolated anomaly: across
CWE scenarios, the share of vulnerable programs reaches
approximately 40-44% depending on the selected slice, and
for CWE-79 (Cross-Site Scripting) the authors separately
report that among Copilot's top-scoring variants no
vulnerabilities are observed (0%), whereas in the overall set
of variants vulnerability is present in 19% of cases [22]. Such
heterogeneity underscores that a model’s best answer and
its typical behaviour can diverge statistically, complicating
safe deployment practice: stable guarantees that a successful
example reflects the norm are not provided.

Second, the literature indicates persistent security blind
spots arising from the induction of frequent patterns from
training data. Al may propose weak hashing algorithms,
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such as MD5, or hardcode API keys, as these patterns are
common in example corpora and educational materials [23].
As a result, the model reproduces recognisable solutions
that appear workable in the short term, but in fact create an
attack surface and degrade risk controllability.

Third, a particular form of technical debt emerges: even
when code appears correct, it can be redundant, bloated, and
poorly maintainable. Developers report that Al-generated
code often complicates maintenance, and in [24], respondents
explicitly indicated the need to modify generated fragments
prior to use. This should be interpreted not as a cosmetic
adjustment, but as a symptom: generation accelerates
artefact production while simultaneously increasing future
work volume for validation, refactoring, and conformance to
quality standards.

A distinct category of risks is formed by hallucinations
in the coding context. Here, the problem is not novice
mistakes, but the generation of syntactically valid yet
functionally nonexistent constructs that appear plausible
and may therefore pass initial attention-based checks.
A particularly dangerous manifestation is dependency
hallucination (Hallucinated Packages, Slopsquatting): the
model may recommend importing libraries with realistic
names that do not exist in the ecosystem, such as fast-async-
auth-helper. Adversaries may monitor such hallucinations,
register packages with corresponding names, and embed
malicious code, converting a generation error into a supply-
chain compromise channel. Study [25] shows that 21.7% of
generated dependencies are hallucinations. This indicates

that the risk is not peripheral, but statistically significant,
where isolated cases can escalate into large-scale events
under operational scaling.

Additionally, LLMs exhibit a tendency to create synthetic
abstractions: instead of utilising standard libraries and
accepted practices, they invent proprietary mini-security
frameworks, creating an illusion of protection without
verifiable guarantees [26]. Such pseudo-standardisation
is hazardous precisely because it produces an appearance
of solution completeness: the code looks structured and
engineered, yet its properties are not confirmed by industry
audits and do not rely on a mature ecosystem.

Finally, mobile platforms intensify specific risks. API
obsolescence is particularly acute: models trained on data up
to 2023 often generate code using deprecated Android APIs,
resulting in compatibility issues with newer OS versions
[27]. In this context, a generation error becomes not only a
vulnerability or a bug, but also a source of operational costs,
since it requires additional adaptation to current SDKs and
platform policies.

In parallel, the limitations of On-Device Al are documented.
Attempts to run testing LLM agents directly on devices,
driven by concerns for privacy and autonomy, face hardware
constraints. Small models exhibit a significant drop in
reasoning capability compared to large-scale cloud models,
rendering them currently unsuitable for complex testing
scenarios [28]. Table 4 illustrates a comparative analysis
of key risks in LLM-based code generation for mobile
platforms.

Table 4. Comparative analysis of key risks in LLM-based code generation for mobile platforms

Phenomenon |What it looks like in AI- | Quantitative / Empirical | Mobile-specific notes Source
/ Risk Area generated code signal
Known Functional correctness is often | 51.42% of LLM-generated | General (not platform-specific | [21]
vulnerabilities | prioritised over security, leading | code contained known CWE | in this finding).
(CWE) in to insecure implementations. | vulnerabilities.
generated code
Hallucinated Suggested dependencies may | 21.7% of generated depen- | Highrelevancetomobilebuild/ | [25]
packages / not exist; attackers can register | dencies were hallucinations. | dependency ecosystems; no
Slopsquatting | those names and inject malware platform split reported in text.
into the supply chain.
Deprecated Generation relies on deprecated | Qualitative finding (models | Android-specific compatibility | [27]
Android Android APlIs, creating | trained on data up to 2023 | risk with newer OS versions.
APIs (API compatibility issues on newer | often output deprecated
obsolescence) | OS versions. APIs).
On-device LLM |Small on-device models lack | Qualitative finding: significant | Mobile/on-device constraints | [28]
limitations for | the reasoning capacity of cloud | reasoning drop; not suitable | are driven by privacy/offline
testing agents | models, which limits their | yet for complex tests. goals, but are limited by
application in complex testing hardware.
scenarios.

Thus, the mobile contour faces dual pressure: on one hand, the demand for autonomy and privacy; on the other, insufficient
computational resources to sustain the required level of reasoning in quality and security assurance tasks.
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DISCUSSION

The conducted review indicates a fundamental shift in the
profession. Whereas previously the developer’s primary skill
was knowledge of syntax and algorithms for writing code
from scratch, in the GenAl era, the key competence becomes
verification. The developer is transformed into an architect
who formulates the task (prompt), and an auditor who
critically evaluates the output. The degree of topic maturity
is considered below.

First, the review results should be interpreted in the
context of the research field’s maturity and the limitations
of the current evidence base. The tertiary study by Zein
et al. shows that mobile engineering has accumulated a
substantial number of SLR/mapping works; however, they
are frequently fragmented by subdomain (QA, architecture,
UX, security) and heterogeneous in methodological rigour,
complicating direct comparison of effects across studies
and the transferability of conclusions to industry [2]. In
parallel, survey studies on factors impeding automated
testing adoption report that barriers are not only technical
but also organisational (maintenance cost of computerised
tests, competence deficits, resistance to process change) [3],
and a systematic review of mobile automation framework
applicability confirms brittleness and high script-test
maintenance costs under Ul evolution [4]. Collectively, in
baseline mobile automation and adoption challenges, the
literature suffices to assert structural limitations of traditional
approaches, against which Al appears as a mechanism for
reducing cognitive and operational costs. At the same time,
gaps remain: there are insufficient comparable, multi-site
industrial studies that simultaneously account for application
type, CI/CD maturity, team composition, and real support
costs (TCO). Consequently, Al effects at the organisational
or mobile product portfolio level are described more weakly
than at the level of individual tools and cases.

Second, the literature on Al-assisted programming supports
the productivity-growth thesis, while simultaneously
indicating conditions under which this effect is stable and
economically meaningful. A review of NLG/NLU big code
systems systematises why LLMs perform best in template
generation, transformations, and context explanation [5].
Empirical Copilot assessments show that the applicability
of suggestions and time savings are heterogeneous and
depend on the task context [8]. Comparative studies of
code quality across Copilot/CodeWhisperer/ChatGPT
complement the picture by showing that acceleration must
be evaluated jointly with qualitative artifact characteristics
(readability, standards compliance, maintainability), since
these determine total cost of ownership at subsequent stages
[9]; moreover, comparative evaluation for Swift generation
emphasizes platform asymmetry and elevated error risks
in less data-rich ecosystems [10]. With respect to Al impact
on micro-productivity (task completion speed) and quality
variability, the literature base is sufficient for substantiated

conclusions; however, notable gaps remain specifically for
the mobile domain: limited numbers of studies measure LLM
impact on mobile-specific concerns (architectural patterns,
performance/energy consumption, lifecycle correctness,
accessibility, store-policy compliance), and long-term
longitudinal data are lacking on how Al-assisted code affects
technical debt and defectiveness across multiple releases
rather than only at the moment of generation.

Third, the discussion of security and robustness risks
demonstrates that speed increases without strengthening
trust boundaries can produce systemic debt, particularly
when sensitive to the mobile attack surface. Large-scale
measurements of LLM generation security and evaluations
of Copilot’s contribution to vulnerabilities show that the
probability of insecure implementations is statistically
material and requires process-level institutionalisation of
secure-by-default (SAST/DAST, secret scanning, dependency
policies) [21, 22, 23]. The hallucinated packages risk expands
the threat model to the supply chain, where a generation
error can be monetised via the registration of dependency
lookalikes [25]. Studies of user adaptation to hallucinations
and privacy challenges emphasise that robustness becomes
an organisational practice rather than a tool property [6].
Survey data on the applicability of Al assistants indicate
that a significant share of code requires refinement before
industrial use, shifting the economics of gains toward
verification costs [24, 26]. On mobile platforms, the Android
API evolution and compatibility problem is additionally
critical [27], and edge-efficient LLM limitations support the
conclusion of the necessity of hybrid architectures (on-device
execution and cloud reasoning) [28]. Regarding general Al-
code risks and supply-chain concerns, the contemporary
literature provides sufficient basis to justify mandatory
strengthened controls; however, mobile-ecosystem-specific
gaps persist: comparatively few studies address Android/
i0S-characteristic vulnerabilities (IPC, deep links, WebView,
keychain/keystore, certificate pinning), privacy under
transmission of Ul data (screenshots/accessibility trees) to
cloud LLMs, and practices for secure prompting and data
governance in mobile teams, where regulatory and store
requirements are particularly strict.

The data indicate that the largest productivity gains accrue
to senior developers who can quickly recognise an error or
vulnerability in Al suggestions. For juniors, Al may become
a trap of confident incompetence, where syntactically
correct but logically flawed code is accepted uncritically.
Industry faces a classic trade-off. Al adoption can radically
reduce Time-to-Market, which is critical in a competitive
mobile environment. However, this gain may be negated by
deferred penalties in the form of security incidents and the
accumulation of technical debt. Organisations adopting Al
must revise CI/CD processes. Human-only code review is
insufficient, since the volume of generated code increases.
Integration of automated SAST/DAST tools is required,
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specifically configured to detect patterns characteristic of Al
errors (hallucinated packages, hardcoded secrets).

Current advances in multi-agent systems (ScenGen)
demonstrate that automated testing has approached
the level of human understanding in the sense that it
can interpret interface states and consistently execute
meaningful verification actions guided by context and
expected system behaviour. At the same time, such progress
does not imply that corresponding approaches have become
technologically inexpensive or seamlessly applicable at scale:
key constraints remain token costs and latency arising from
transmitting screenshots to cloud LLMs, hindering pervasive
deployment.

Against this background, the most plausible development
direction appears to be hybrid architectures in which
computational roles and temporal requirements are
stratified across levels. The cloud contour can be viewed as
a heavy reasoning layer: a powerful model forms the testing
strategy and assumes analysis of complex failures, solving
tasks where generalisation, hypothesis construction, and
interpretation of non-standard situations are essential.

At the device level, by contrast, fast execution is naturally
described: a lightweight local model performs navigation
and simple checks in real-time without requiring network
connectivity. In such a distribution, emphasis shifts toward
the autonomous execution of frequently occurring and fast
actions, while rare, expensive, and cognitively intensive
operations are delegated to the cloud, where a more powerful
reasoning apparatus is available.

CONCLUSION

The conducted systematic literature review demonstrates
that, between 2019 and 2025, mobile development and
testing underwent a qualitative shift toward the generative
Al paradigm and multi-agent architectures. The selection of
28 studies from 638 identified records, along with quality
assessment using an adapted Sjgberg checklist, establishes
an evidentiary framework for the review’s conclusions.
This is not a set of disparate technological observations,
but a synthesis of empirical data comparable in terms of
acceleration, effectiveness, and risk metrics.

Regarding development acceleration, the SLR results
document a stable effect from adopting Al assistants, primarily
manifesting in template code generation, refactoring, and
artefact transformation. The literature provides quantitative
estimates of up to 55% acceleration in coding for typical
tasks, and Time-to-Market improvements on the order of
30%, while noting that a substantial share of routine code
volume can be generated by Al Particularly illustrative is
the industrial legacy migration case: the transition of 3,500
test files from Enzyme to React Testing Library, which, under
traditional estimates, could have taken up to 1.5 years, was
completed in 6 weeks with the automated migration of 97%
of files. At the same time, the review emphasises platform

and language heterogeneity: the highest performance is
observed for Kotlin/Java and cross-platform stacks (Flutter/
React Native), whereas Swift/SwiftUl generation quality
is reduced, associated with training-data scarcity and
ecosystem closure.

In testing, the systematic synthesis indicates a transition
from deterministic, brittle scripted scenarios to agent-
based approaches capable of semantic interface perception
and planning. Multi-agent systems such as ScenGen and
AutoQALLMs are characterised as the most promising
architectural generation, wherein GUI perception, action
selection, execution, and result revision are divided into
specialised roles, and context is maintained via action
memory. Empirically, this is expressed in code-coverage
increases of 20-30% compared to traditional tools, and in
high accuracy for executing complex scenarios. For ScenGen,
Logical Decision-Making Accuracy values range from 90.14%
to 100%, depending on the application. An important maturity
element is also provided by visual self-healing mechanisms,
as well as specialised solutions addressing operational
causes of run instability. These solutions include the closure
of blocking pop-up windows with 91.7% detection accuracy
and a 15.6% increase in the efficiency of crowdsourced bug-
report processing via visual clustering.

The key contribution of this SLR is not only the documentation
of acceleration, but also the systematic fixation of quality and
security risks that scale alongside generation. The literature
describes a trust crisis in which productivity growth is
accompanied by erosion of correctness and verifiability
guarantees. The most stringent signal concerns security:
according to included studies, up to 51.42% of LLM-generated
code contains known CWE-classified vulnerabilities, and
aggregate scenario-set estimates indicate a range of 40-44%
vulnerable implementations. An additional, fundamentally
novel threat class is formed by dependency hallucinations
(hallucinated packages / slopsquatting): the share of
nonexistent dependencies in generated recommendations
reaches 21.7%, turning a generation error into a practical
supply-chain attack vector. The
reproduction of unsafe frequent patterns (e.g., weak hashes
or hardcoded secrets), growth of specific technical debt due
to bloated and poorly maintainable fragments, and, for the
mobile domain, an additional API obsolescence problem,
whereby models trained on data up to 2023 tend to propose
deprecated Android APIs, increasing operational costs and
compatibility risks.

review also notes

Collectively, the systematic literature review substantiates
the conclusion that the developer’s role is transforming from
primary code production toward verification, architectural
oversight,and security auditing, as well as management of the
probabilistic nature of generative outputs. Empirical evidence
confirms that Al accelerates the mobile SDLC and increases
the intellectual capacity of testing; however, the same body of
studies indicates that adoption cannot be treated as a neutral
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tool substitution: it requires institutionalization of trust
contours, strengthening of security protocols, and revision
of quality assurance approaches, where deterministic checks
are complemented by practices designed for statistical
variability, hallucinations, and synthetic vulnerabilities.
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