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This article looks at how older engineering methods and newer AI-based ones differ when they are used to solve software-
engineering problems. Most of the examples come from recent empirical studies, several review papers, and work on 
deep-learning models. The aim of the article is to look at how the older metric-based techniques compare with the newer 
ideas built around machine learning, deep learning, and large language models. The main result show that the traditional 
methods still help because they are clear and fairly steady to work with, but they do not capture the actual semantic 
behaviour of code very well. The AI models — especially the hybrid setups and the transformer ones — tend to score higher 
and can be used in more parts of the development process. These systems also introduce their own difficulties. Many of 
them depend on fairly large datasets, and it is often hard to work out what led the model to a specific output, even when 
the result looks reasonable. Re-running the same experiment does not always produce the same behaviour either, which 
can complicate evaluation. In practice, teams sometimes have to reshape parts of their workflow simply to make the tools 
usable. The article will interest practitioners seeking to streamline their daily work with the new technology.
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Abstract

Introduction
Engineering work has, for a long time, leaned on structured 
analytic routines and on metric sets designed by practitioners 
who knew the systems they were evaluating. In software 
engineering, this has usually meant things like static 
analysis, object-oriented complexity measures, and various 
process indicators or rule-driven checks. These methods 
remain in use largely because people know how to interpret 
them and because they behave predictably across different 
projects. As software systems have kept growing and getting 
more tangled with each other, the limits of those hand-made 
indicators have become harder to ignore. They often miss the 
bits of meaning or context that start to matter once a project 
gets big enough.

In the last few years, people have tried using AI to handle 
the same issues from another angle. Instead of relying only 
on whatever features were defined ahead of time, a lot of 
machine-learning and deep-learning models try to build 
their own representations from the data they are given. Some 
hybrid designs even mix the older statistical descriptors 

with learned semantic features and tend to produce stronger 
results than either of the two alone [1,2]. Large language 
models have pushed this further still, taking on tasks that 
would previously have required separate tools—formulating 
problems, drafting code, spotting bugs, generating tests, 
and assisting with maintenance work [3,4]. These systems 
frequently outperform earlier methods, but their use is tied 
up with questions about transparency and reproducibility, 
and with whether organisations actually have the data, 
infrastructure, or expertise needed to use them effectively 
[6–10].

Even with all this work going on, the literature still tends 
to treat the traditional methods and the AI-based ones as if 
they were separate topics. A lot of studies look at a single 
model on its own and mainly report accuracy or similar 
numbers, without asking how the approach itself shapes 
the way engineers think about the problem. Because of 
that, researchers do not have a clear sense of how the two 
methods compare in terms of interpretability, the practical 
limits they run into, or how smoothly they fit into the 
development lifecycles that teams actually use. This article 
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attempts to close that gap by bringing together findings from 
recent empirical studies, reviews, and industry accounts to 
look at the two traditions side by side and explore what each 
one contributes—and what each one struggles with—in 
everyday software development.

Methods and Materials 
This study draws on a review of ten peer-reviewed papers 
published between 2021 and 2025, with each one reflecting a 
different line of work on traditional and AI-based approaches 
in software engineering. Abdu et al. looked at how semantic 
information from abstract syntax trees can be combined 
with older PROMISE metrics in a hybrid CNN–MLP setup 
for defect prediction [1]. Albattah and Alzahrani compared 
a range of machine-learning and deep-learning algorithms 
to see which of them performs best for defect prediction 
in practice [2]. Alenezi and Akour focused on AI tools used 
across the software-development lifecycle and discussed 
their benefits as well as the obstacles teams face when trying 
to adopt them [3]. Banh, Holldack, and Strobel examined 
how generative AI systems are starting to change everyday 
engineering work, including the way tasks are divided and 
how developer roles shift inside organisations [4]. Batool 
and Khan assessed several deep-learning models—CNNs, 
RNNs, LSTMs—to see how well they compare with traditional 
methods for predicting software faults [5].

Giray et al. carried out a broad survey of how deep learning 
has been used in defect prediction and paid particular 
attention to recurring methods, common problems in 
published work, and the state of reproducibility across 
the papers they examined [6]. Hasan and Mohi-Aldeen 
approached the field through a systematic review, gathering 
together the algorithms, datasets, and performance issues 
that appear most often in deep learning–based defect 
prediction research [7]. Hou et al. looked at a different part 
of the landscape by reviewing how large language models are 
being applied in software engineering, mapping their use in 
tasks such as generating code, debugging, writing tests, and 
supporting maintenance activities [8]. Pan, Lu, and Xu tested 
CodeBERT in a practical setting and focused on whether it 
actually picks up the semantic parts of code, as well as how 
often it does better than the older defect-prediction methods 
on the same problems [9]. Sikic and colleagues approached 
the issue differently. They built a graph-neural-network 
model that uses the structural connections already built into 
source code, and in their tests this allowed them to push 
classification accuracy higher [10].

These studies, together with the earlier ones, cover quite 
a wide range: traditional metric-based engineering work, 
different strands of machine learning and deep learning, 
hybrid setups, and the newer applications built around large 
language models and other generative systems. Viewed 
together, they show a field that is gradually broadening 
its predictive tools and its workflow support, while also 
revealing how engineers and automated systems now share 
parts of the work that used to be done entirely by hand.

Even with all of this research, some gaps are still easy to 
spot. A lot of the work looks either at the older metric-based 
techniques or at single AI models on their own, without 
really asking how these two ways of approaching a problem 
change the way engineers actually work. And quite a few 
papers stop at reporting accuracy or similar scores, without 
considering how the model fits into day-to-day development 
or what kinds of demands it places on the team that has to use 
it. Many evaluations stay within one task—generating code, 
finding bugs, debugging—without asking how these tools 
sit alongside the workflows that engineers already follow. 
Questions about transparency, reproducibility, integration 
problems, skill development, and the wider organisational 
effects of using AI show up only now and then. Because 
of this, even though the methods themselves are often 
described in detail, there is still no clear picture of how the 
traditional and AI-based approaches really differ in terms of 
how they work and what they require in practice. This study 
addresses that gap by placing the two approaches side by 
side and examining their respective strengths, limitations, 
and implications for engineering work.

Results and Discussion
The studies reviewed here point to a fairly clear divide in how 
the two traditions operate. Older engineering methods rely 
on explicit metrics, step-by-step analytical procedures, and 
models whose behaviour can be explained with little difficulty. 
AI-based methods often perform better on prediction and 
generation tasks, largely because they do not depend on a 
preset list of features and instead pick up patterns directly 
from the data. They also manage to capture the kinds 
of semantic links in code that are difficult to describe in 
advance. Still, the strengths of these models come with their 
own complications. The practical and organisational issues 
they create—data demands, opaque behaviour, concerns 
about deployment—are quite different from the ones people 
are used to dealing with in more traditional settings.

Traditional defect-prediction work, on the other hand, still 
leans heavily on structural metrics such as size, coupling, 
cohesion, cyclomatic complexity, and a set of process-oriented 
indicators. These measures have been useful for steering 
testing and quality-assurance efforts, but their limits have 
become harder to ignore. Several studies point out that two 
pieces of code can look identical when reduced to metrics 
even though they behave very differently once executed 
[1]. Missing increments in loops, memory-management 
oversights, or subtle exception-handling problems are 
typical cases. Because these issues do not alter the values 
of the structural metrics, traditional models treat the faulty 
and corrected versions as the same. This is also why many 
standard machine-learning approaches make little progress 
once they rely only on those metrics, even when researchers 
try different algorithms or tuning strategies [2]. Figure 1 
shows two such examples: the metric profiles match, but the 
behavioural differences are substantial—and in some cases, 
a real safety concern.
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Figure 1. Examples illustrating semantic differences that traditional code metrics cannot detect by Abdu et al [1].

Figurе 1 illustrates two pairs of code examples that 
demonstrate how traditional static code metrics fail to 
capture meaningful semantic differences between buggy 
and corrected implementations. In the first pair (a–b), both 
versions of the copy method have nearly identical structural 
characteristics—such as lines of code, variable counts, and 
cyclomatic complexity—yet the buggy version mishandles 
resources and can produce a memory leak, while the 
corrected version safely encapsulates stream operations 
within the try block. The first example shows a pair of code 
fragments whose meaning diverges even though, at the level 
of traditional metrics, they look identical. In the second 
pair (c–d), the problem is different: a loop is supposed to 
terminate, but the buggy version leaves out the increment, 
so the loop never ends. Again, a metric-based model sees no 
difference because the two files produce the same feature 
vector. 

The real difference between the code variants shows up only 
when they run, not in the metric vectors assigned to them. 
Traditional metrics simply do not recognise these kinds of 
semantic shifts, which is why their predictive power tends to 
flatten out; they can catch broad structural patterns but not 
the details that actually change program behaviour. To detect 
those, models built around structural or semantic cues—AST-
based methods or various deep-learning approaches—are 
far better suited.

Data-driven techniques tackle the issue from another 
angle. Rather than depending on a fixed set of hand-
crafted indicators, these models try to build their own 
representations from the code examples they see. In 

practice, they often pick up patterns—both structural and 
behavioural—that are hard to spell out manually. Giray et al. 
note that convolutional, recurrent, and graph-based models 
tend to outperform approaches built only on metrics, largely 
because they can account for the context around a code 
fragment and the deeper hierarchies that exist inside real 
programs [6]. Graph neural networks show this quite clearly. 
Program code already has a sort of graph shape to it, so these 
models can move through that structure and focus on pieces 
of the code where faults tend to show up [10]. Pan, Lu, and 
Xu saw something similar with transformer models like 
CodeBERT. Those models seem to benefit from dealing with 
natural-language hints and code patterns together, and that 
gives them an edge over the earlier approaches [9].

Hybrid approaches add a different point to the discussion. 
Abdu et al. show that when semantic features derived 
from ASTs are combined with PROMISE-style statistical 
descriptors in a CNN–MLP pipeline, the resulting model 
performs better—across F1, AUC, and several effort-aware 
measures—than models using only one of the two feature 
types [1]. The implication is fairly clear: each family of 
features captures something the other misses, and neither 
one provides a complete view of software behaviour on its 
own. They also provide rough estimates of the computational 
cost involved: building ASTs takes between 0.92 and 3.5 
seconds per file, generating Word2Vec embeddings about 
0.65–2.3 seconds, and training the joint model roughly 22–
35 seconds. These figures suggest that, in practice, hybrid 
deep-learning systems remain feasible even for fairly large 
projects (Figure 2).
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Figure 2. Comparative performance of traditional, semantic, and hybrid models

Figure 2 presents a normalized comparison of traditional, 
semantic deep-learning, and hybrid defect-prediction models 
across three commonly reported metrics: F1, AUC, and effort-
aware PofB20 (an effort-aware evaluation metric widely 
used in software defect prediction research). Because the 
reviewed studies use heterogeneous datasets, experimental 
setups, and reporting conventions, exact numerical values 
cannot be combined directly. The bar heights are not meant 
to represent precise values. They come from a simple scaling 
of the performance ranges reported in several studies (Abdu 
et al.; Albattah & Alzahrani; Batool & Khan; Giray et al.). 
Looked at this way, the older metric-based models end up 
near the lower end of the scale — their results tend to be 
steady but the improvements they offer are fairly modest. 
The semantic deep-learning models sit somewhere in the 
middle of the scale. They usually show clearer gains than 
the older metric-based ones, although the results aren’t 
completely uniform across studies. The hybrid models — 
the ones that mix engineered features with those learned 
from data — are used as the upper reference point and set 

to 100%. The intention behind this is simply to show the 
general trend that keeps appearing in the literature. It isn’t 
meant to suggest that the numerical distance between the 
groups is precise or fixed in any strict sense.

AI tools now appear in parts of the engineering workflow 
that previously were not considered especially suitable for 
automation. Large language models, for instance, have been 
tested on a wide range of tasks: interpreting or rewriting 
requirements, generating tests, helping with parts of design, 
locating bugs, and supporting maintenance work. Hou et al. 
list more than fifty different uses of these models, ranging 
from pulling pieces out of formal specifications to fixing 
broken code and checking for security problems [8]. Part of 
their appeal is that the same model can work with natural 
language and with source code, without needing separate 
systems. But the results they produce still depend a lot on 
the datasets used for tuning or prompting. If the data are 
uneven, or if some cases are poorly represented, the outputs 
can shift in ways that aren’t easy to predict. Table 1 gives a 
sense of how these issues show up in practice.

Table 1. Coverage of traditional vs. AI-mediated methods across the software engineering lifecycle

Lifecycle Stage Traditional Methods AI-Mediated Methods
Requirements 
Engineering

• Manual stakeholder interviews
• Text-based requirement documents
• Rule-based extraction

• LLM-based requirement summarization and rewriting
• Automated extraction of functional/non-functional requirements
• AI-generated traceability links

Design • UML diagrams and architecture models
• Expert-driven design reviews

• AI-assisted architecture suggestions
• Pattern detection in design artefacts
• Automated consistency and constraint checks

Coding • Manual code implementation
• Basic IDE autocomplete
• Linters and static rule checks

• LLM-based code generation (functions/classes)
• Semantic code completion (Copilot-like systems)
• Automated refactoring and style harmonization

Testing • Manually written test suites
• Static/dynamic analysis tools
• Manual coverage evaluation

• Automated test case generation
• Bug prediction models (CNN, LSTM, GNN)
• AI-driven fuzzing and vulnerability detection
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Deployment • Manual CI/CD configuration
• Script-based rollouts

• AI-optimized pipeline configuration
• Automated detection of deployment risks
• Predictive rollout optimisation

Maintenance • Manual debugging and patching
• Log inspection
• Human triage of issues

• AI-suggested code repair
• Predictive maintenance & anomaly detection
• LLM-based debugging guidance

Table 1 shows where the traditional techniques and the 
AI-based tools emerge in the various parts of the software-
engineering process. The point is not just to list the tasks but 
to give a sense of how the reach of AI has been spreading 
beyond its usual role in defect prediction. The traditional 
techniques still lean heavily on manual checking and on 
artefacts or rules that people prepare themselves; these are 
familiar and easy to follow, but they take time and rely on 
fairly specific expertise. The AI-oriented methods deal with 
the same stages in a different way, adding automation and a 
layer of semantic interpretation that the older tools didn’t 
have. Large language models, for example, are now being 
used to extract requirements or restate them when needed, 
and several deep-learning systems are being applied to 
automated testing and bug-prediction tasks. Some of the 
generative tools have begun showing up in coding and 
debugging tasks as well, and in a few cases even in parts of 
maintenance. In the table, the stages are separated to show 
where AI mostly works alongside existing practice — design 
and deployment tend to fall in that group — and where it 
begins to take over more routine pieces of the job, like low-
level coding or test generation. Looking at the lifecycle this 
way helps make it clearer how AI affects not only model 
accuracy but also how engineering work is divided and 
organised.

At the practice level, AI-mediated engineering approaches 
deliver measurable productivity and quality benefits. Survey 
data from Alenezi and Akour show that 74% of practitioners 
report reduced coding time, 62% observe fewer post-release 
defects, and 45% note improved team resource allocation 
after adopting AI tools such as Copilot, IntelliCode, or AI-
driven test automation [3] . Some tool-specific studies point 
to quite substantial improvements. For example, Snyk Code 
reports noticeably better early bug detection—around a 
40% gain—and a marked reduction in manual review time, 
roughly by half. AlphaCode, working in a very different 
context, reaches a success rate of about 65% on competitive 
programming tasks and shortens prototyping cycles by close 
to 40% [10]. These kinds of jumps are not what traditional 
metric-based approaches typically deliver, which tend to 
improve performance only gradually.

The move toward AI-mediated techniques, however, brings 
its own set of complications. Giray et al. note that nearly half 
of the deep-learning studies they reviewed (48%) do not 
provide any reproducibility package, and this situation has 
not improved over time [6]. Traditional methods do not face 
this problem to the same degree because their assumptions 
and evaluation steps are usually straightforward to 

reconstruct. Additional difficulties emerge along the lifecycle: 
inconsistent data formats, skewed class distributions, a 
tendency toward overfitting, and practical issues when 
deploying or maintaining models. These are considerably 
more involved than the challenges posed by older analytical 
models [6].

When these tools are introduced in real engineering teams, 
a different layer of concerns appears. Only a minority of 
practitioners—about 40%—express full confidence in AI-
generated outputs, and the reasons they give are mostly 
related to opacity and uncertainty about potential errors 
[3]. The survey numbers also point to practical issues. Many 
respondents mention skill gaps (58%) and the cost of getting 
these tools running (52%), both of which slow adoption. Banh 
et al. note that generative systems are already shifting how 
developers spend their time: instead of writing code from 
scratch, more of the work goes into reviewing and steering 
the system’s suggestions. This raises questions about how 
skills evolve over time, how much teams end up depending 
on automated tools, and whether these new routines fit well 
with the workflows that organisations already use [4].

Another difficulty has to do with how scattered the current 
set of AI tools still is. Alenezi and Akour note that even though 
many of these tools do well on specific tasks—generation, 
prediction, testing—most of them work in isolation and 
do not pass information from one stage of the lifecycle to 
another [3]. By contrast, traditional approaches are usually 
part of larger frameworks that connect design, testing, and 
maintenance, which makes the overall workflow easier to 
keep together. Without some broader framework tying these 
tools together, whatever improvements they make tend to 
stay stuck in the single step they were built for. They do what 
they are meant to do there, but very little carries forward 
into the rest of the workflow.

Because of this, the difference between the older approaches 
and the AI-oriented ones is less straightforward than it 
seems at first. The traditional methods still give engineers 
processes they can check and follow, and they usually sit 
comfortably within the lifecycle structures teams already use. 
The AI models contribute something else entirely: they can 
reach higher accuracy, they pick up semantic or contextual 
cues that the older metrics ignore, and they often shorten 
pieces of work that normally take longer. But the trade-offs 
are real. These systems depend heavily on data, on whether 
an organisation can support them, and on people keeping a 
close eye on how they behave. For now, the setups that mix 
the two worlds — using engineered indicators alongside 
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features the model learns on its own — seem to be the most 
practical, adding to what the traditional techniques already 
do instead of replacing them.

Conclusion
Developers have not so much moved from one clear set of 
engineering methods to another as worked their way through 
a slow and uneven shift. Older techniques, the ones built 
around manually defined metrics and long-familiar analytical 
steps, are still used in many places simply because people 
know exactly what goes into them. Teams are also familiar 
with how these older tools tend to behave, which makes 
them easy to work with, but their shortcomings become 
noticeable once they are used on newer systems. Many of 
these systems operate in ways that cannot be captured by a 
small set of structural metrics, and the gap between what the 
tools measure and what the system actually does has only 
widened as software has grown in size and complexity.

More recent AI-based approaches come at the problem from 
a different direction. Rather than working with a fixed set of 
indicators, they try to learn patterns straight from the code 
and from the artefacts surrounding it. A lot of these patterns 
are difficult to spell out in fixed rules, which is part of the 
reason deep models and language-based systems often do 
better on prediction tasks. They can also help with routine 
work, such as suggesting where a problem might sit or 
narrowing down the part of the code that needs attention. 
But the advantages come with their own complications. A 
model’s behaviour can shift quite a bit depending on the data 
it has seen, and it is often not obvious how it arrived at a 
particular output. Teams also run into the simple problem of 
trying to fit these tools into workflows that were set up long 
before anyone imagined using systems like this. On top of 
that, a number of studies mention trouble repeating results, 
especially when the information about how the model was 
trained or which datasets were involved is incomplete or 
only briefly described.

When the different results from the studies are put side 
by side, the picture that emerges is not one where a 
single approach clearly wins. The older methods still give 
engineers something steady to work from, and many rely on 
that familiarity when making decisions. The newer AI tools 
contribute something quite different — they notice patterns 
and contextual signals that the older metric sets never really 
captured. What seems to work best for now is not choosing 
one over the other but combining them in a way that lets 
each cover the gaps of the other. When engineered features 
are used along with what the models learn from data, the 
two parts tend to support each other rather than compete. 
It is less a matter of replacing one tradition with another 
and more of finding a mix that people can actually use in 
everyday practice.

Several directions for future research are becoming 
increasingly clear, although none of them have been explored 

in a consistent way. One of the more immediate needs is to 
understand how the various AI tools now used in software 
engineering can be linked so that information generated 
at one stage is not lost by the next. At the moment, code 
generators, defect predictors, and testing systems are typically 
introduced as separate additions to existing workflows, 
which means they rarely benefit from one another’s outputs. 
Reproducibility remains a persistent point of friction in the 
literature. Quite a few deep learning papers show strong 
numerical results, but the data or model setups behind them 
are not always available in a form that others can actually 
use. Sometimes the dataset versions differ from what is 
described; in other cases, the training details are scattered 
across supplementary files or missing altogether. Without 
more stable conventions for sharing these materials, it 
becomes difficult to judge how much progress is being made 
or to repeat earlier experiments with any confidence.

Concerns about transparency continue to surface in 
practice, and they tend to slow down adoption more than 
the performance numbers would suggest. In settings where 
safety rules or compliance checks are tight, engineers 
often hesitate to bring in models whose reasoning cannot 
be inspected in a straightforward way. This hesitation is 
not surprising, since the consequences of relying on an 
opaque system can be significant. Currently, it is still unclear 
which interpretability techniques can actually be trusted 
in everyday engineering practice. The longer-term impacts 
of working with AI tools have received little systematic 
attention, and much of the available evidence is anecdotal 
or scattered. Looking more closely at these areas could help 
reveal how AI might contribute to a more continuous and 
integrated development process..
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