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This article looks at how older engineering methods and newer Al-based ones differ when they are used to solve software-
engineering problems. Most of the examples come from recent empirical studies, several review papers, and work on
deep-learning models. The aim of the article is to look at how the older metric-based techniques compare with the newer
ideas built around machine learning, deep learning, and large language models. The main result show that the traditional
methods still help because they are clear and fairly steady to work with, but they do not capture the actual semantic
behaviour of code very well. The Al models — especially the hybrid setups and the transformer ones — tend to score higher
and can be used in more parts of the development process. These systems also introduce their own difficulties. Many of
them depend on fairly large datasets, and it is often hard to work out what led the model to a specific output, even when
the result looks reasonable. Re-running the same experiment does not always produce the same behaviour either, which
can complicate evaluation. In practice, teams sometimes have to reshape parts of their workflow simply to make the tools
usable. The article will interest practitioners seeking to streamline their daily work with the new technology.
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INTRODUCTION with learned semantic features and tend to produce stronger
results than either of the two alone [1,2]. Large language
models have pushed this further still, taking on tasks that
would previously have required separate tools—formulating
problems, drafting code, spotting bugs, generating tests,
and assisting with maintenance work [3,4]. These systems
frequently outperform earlier methods, but their use is tied

up with questions about transparency and reproducibility,

Engineering work has, for a long time, leaned on structured
analyticroutines and on metric sets designed by practitioners
who knew the systems they were evaluating. In software
engineering, this has usually meant things like static
analysis, object-oriented complexity measures, and various
process indicators or rule-driven checks. These methods

remain in use largely because people know how to interpret
them and because they behave predictably across different
projects. As software systems have kept growing and getting
more tangled with each other, the limits of those hand-made
indicators have become harder to ignore. They often miss the
bits of meaning or context that start to matter once a project
gets big enough.

In the last few years, people have tried using Al to handle
the same issues from another angle. Instead of relying only
on whatever features were defined ahead of time, a lot of
machine-learning and deep-learning models try to build
their own representations from the data they are given. Some
hybrid designs even mix the older statistical descriptors

and with whether organisations actually have the data,
infrastructure, or expertise needed to use them effectively
[6-10].

Even with all this work going on, the literature still tends
to treat the traditional methods and the Al-based ones as if
they were separate topics. A lot of studies look at a single
model on its own and mainly report accuracy or similar
numbers, without asking how the approach itself shapes
the way engineers think about the problem. Because of
that, researchers do not have a clear sense of how the two
methods compare in terms of interpretability, the practical
limits they run into, or how smoothly they fit into the
development lifecycles that teams actually use. This article
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attempts to close that gap by bringing together findings from
recent empirical studies, reviews, and industry accounts to
look at the two traditions side by side and explore what each
one contributes—and what each one struggles with—in
everyday software development.

METHODS AND MATERIALS

This study draws on a review of ten peer-reviewed papers
published between 2021 and 2025, with each one reflecting a
different line of work on traditional and Al-based approaches
in software engineering. Abdu et al. looked at how semantic
information from abstract syntax trees can be combined
with older PROMISE metrics in a hybrid CNN-MLP setup
for defect prediction [1]. Albattah and Alzahrani compared
a range of machine-learning and deep-learning algorithms
to see which of them performs best for defect prediction
in practice [2]. Alenezi and Akour focused on Al tools used
across the software-development lifecycle and discussed
their benefits as well as the obstacles teams face when trying
to adopt them [3]. Banh, Holldack, and Strobel examined
how generative Al systems are starting to change everyday
engineering work, including the way tasks are divided and
how developer roles shift inside organisations [4]. Batool
and Khan assessed several deep-learning models—CNNs,
RNNs, LSTMs—to see how well they compare with traditional
methods for predicting software faults [5].

Giray et al. carried out a broad survey of how deep learning
has been used in defect prediction and paid particular
attention to recurring methods, common problems in
published work, and the state of reproducibility across
the papers they examined [6]. Hasan and Mohi-Aldeen
approached the field through a systematic review, gathering
together the algorithms, datasets, and performance issues
that appear most often in deep learning-based defect
prediction research [7]. Hou et al. looked at a different part
of the landscape by reviewing how large language models are
being applied in software engineering, mapping their use in
tasks such as generating code, debugging, writing tests, and
supporting maintenance activities [8]. Pan, Lu, and Xu tested
CodeBERT in a practical setting and focused on whether it
actually picks up the semantic parts of code, as well as how
often it does better than the older defect-prediction methods
on the same problems [9]. Sikic and colleagues approached
the issue differently. They built a graph-neural-network
model that uses the structural connections already built into
source code, and in their tests this allowed them to push
classification accuracy higher [10].

These studies, together with the earlier ones, cover quite
a wide range: traditional metric-based engineering work,
different strands of machine learning and deep learning,
hybrid setups, and the newer applications built around large
language models and other generative systems. Viewed
together, they show a field that is gradually broadening
its predictive tools and its workflow support, while also
revealing how engineers and automated systems now share
parts of the work that used to be done entirely by hand.

Even with all of this research, some gaps are still easy to
spot. A lot of the work looks either at the older metric-based
techniques or at single Al models on their own, without
really asking how these two ways of approaching a problem
change the way engineers actually work. And quite a few
papers stop at reporting accuracy or similar scores, without
considering how the model fits into day-to-day development
or what kinds of demands it places on the team that has to use
it. Many evaluations stay within one task—generating code,
finding bugs, debugging—without asking how these tools
sit alongside the workflows that engineers already follow.
Questions about transparency, reproducibility, integration
problems, skill development, and the wider organisational
effects of using Al show up only now and then. Because
of this, even though the methods themselves are often
described in detail, there is still no clear picture of how the
traditional and Al-based approaches really differ in terms of
how they work and what they require in practice. This study
addresses that gap by placing the two approaches side by
side and examining their respective strengths, limitations,
and implications for engineering work.

RESULTS AND DISCUSSION

The studies reviewed here point to a fairly clear divide in how
the two traditions operate. Older engineering methods rely
on explicit metrics, step-by-step analytical procedures, and
models whose behaviour can be explained with little difficulty.
Al-based methods often perform better on prediction and
generation tasks, largely because they do not depend on a
preset list of features and instead pick up patterns directly
from the data. They also manage to capture the Kkinds
of semantic links in code that are difficult to describe in
advance. Still, the strengths of these models come with their
own complications. The practical and organisational issues
they create—data demands, opaque behaviour, concerns
about deployment—are quite different from the ones people
are used to dealing with in more traditional settings.

Traditional defect-prediction work, on the other hand, still
leans heavily on structural metrics such as size, coupling,
cohesion, cyclomatic complexity, and a set of process-oriented
indicators. These measures have been useful for steering
testing and quality-assurance efforts, but their limits have
become harder to ignore. Several studies point out that two
pieces of code can look identical when reduced to metrics
even though they behave very differently once executed
[1]. Missing increments in loops, memory-management
oversights, or subtle exception-handling problems are
typical cases. Because these issues do not alter the values
of the structural metrics, traditional models treat the faulty
and corrected versions as the same. This is also why many
standard machine-learning approaches make little progress
once they rely only on those metrics, even when researchers
try different algorithms or tuning strategies [2]. Figure 1
shows two such examples: the metric profiles match, but the
behavioural differences are substantial—and in some cases,
a real safety concern.
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public void copy(Directory to, String src, String dest)

1

2= throws IOException {

3 IndexOutput os to.createQutput(dest)
4 IndexInput is = openInput(src);

5 I0Exception priorException = null;

6

7 try {

8 is.copyBytes(os, is.length());

9- } catch (IOException ioe) {

10 priorException = ioce;

1 }

12~ finally {

13 Ioutils.closeSafely(priorException, os, is)
14 }

15 +

)

1 public class Buggy

2= {
3 public static void main(String[] args)
4~ {
= int stop=0;
6 int count=0;
7 do
Hi= ]
9
10 count++;
11 } while (stop=<20):
12 String finish="Stop loop on the "+count;
7 System.out.println(finish);
14 ¥
15 ¥

()

1 public void copy(Directory to, String src, String dest)
2 throws IOException {

3 IndexOutput os null;

4 IndexInput is = null;

5 I0Exception priorException = null

6 try {
7 0s = to.createOutput(dest)
8 is = openInput(src);

9 is.copyBytes(os, is.length())

10- } catch (IOException ioe) {

1 priorException = loe;

12 }

13- finally {

14 IOUtils.closeSafely(priorException, os, is);
15 }

16 }

(b)

1 public class Clean

2= A

3 public sctatic wvoid main(String[] args)
4- {

5 int stop=0;

=3 int count=0;

7 do

8~ 1

9 if (count<=stop)
10 {stop++:}
11 count++;
12 } while (stop<20);
13 String finish="Stop loop on the "+count:
14 System.out.println{finish);
15 }
16 }

«d)

Figure 1. Examples illustrating semantic differences that traditional code metrics cannot detect by Abdu et al [1].

Figure 1 illustrates two pairs of code examples that
demonstrate how traditional static code metrics fail to
capture meaningful semantic differences between buggy
and corrected implementations. In the first pair (a-b), both
versions of the copy method have nearly identical structural
characteristics—such as lines of code, variable counts, and
cyclomatic complexity—yet the buggy version mishandles
resources and can produce a memory leak, while the
corrected version safely encapsulates stream operations
within the try block. The first example shows a pair of code
fragments whose meaning diverges even though, at the level
of traditional metrics, they look identical. In the second
pair (c-d), the problem is different: a loop is supposed to
terminate, but the buggy version leaves out the increment,
so the loop never ends. Again, a metric-based model sees no
difference because the two files produce the same feature
vector.

The real difference between the code variants shows up only
when they run, not in the metric vectors assigned to them.
Traditional metrics simply do not recognise these kinds of
semantic shifts, which is why their predictive power tends to
flatten out; they can catch broad structural patterns but not
the details that actually change program behaviour. To detect
those, models builtaround structural or semantic cues—AST-
based methods or various deep-learning approaches—are
far better suited.

Data-driven techniques tackle the issue from another
angle. Rather than depending on a fixed set of hand-
crafted indicators, these models try to build their own
representations from the code examples they see. In

practice, they often pick up patterns—both structural and
behavioural—that are hard to spell out manually. Giray et al.
note that convolutional, recurrent, and graph-based models
tend to outperform approaches built only on metrics, largely
because they can account for the context around a code
fragment and the deeper hierarchies that exist inside real
programs [6]. Graph neural networks show this quite clearly.
Program code already has a sort of graph shape to it, so these
models can move through that structure and focus on pieces
of the code where faults tend to show up [10]. Pan, Lu, and
Xu saw something similar with transformer models like
CodeBERT. Those models seem to benefit from dealing with
natural-language hints and code patterns together, and that
gives them an edge over the earlier approaches [9].

Hybrid approaches add a different point to the discussion.
Abdu et al. show that when semantic features derived
from ASTs are combined with PROMISE-style statistical
descriptors in a CNN-MLP pipeline, the resulting model
performs better—across F1, AUC, and several effort-aware
measures—than models using only one of the two feature
types [1]. The implication is fairly clear: each family of
features captures something the other misses, and neither
one provides a complete view of software behaviour on its
own. They also provide rough estimates of the computational
cost involved: building ASTs takes between 0.92 and 3.5
seconds per file, generating Word2Vec embeddings about
0.65-2.3 seconds, and training the joint model roughly 22-
35 seconds. These figures suggest that, in practice, hybrid
deep-learning systems remain feasible even for fairly large
projects (Figure 2).
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Figure 2. Comparative performance of traditional, semantic, and hybrid models

Figure 2 presents a normalized comparison of traditional,
semantic deep-learning, and hybrid defect-prediction models
across three commonly reported metrics: F1, AUC, and effort-
aware PofB20 (an effort-aware evaluation metric widely
used in software defect prediction research). Because the
reviewed studies use heterogeneous datasets, experimental
setups, and reporting conventions, exact numerical values
cannot be combined directly. The bar heights are not meant
to represent precise values. They come from a simple scaling
of the performance ranges reported in several studies (Abdu
et al; Albattah & Alzahrani; Batool & Khan; Giray et al.).
Looked at this way, the older metric-based models end up
near the lower end of the scale — their results tend to be
steady but the improvements they offer are fairly modest.
The semantic deep-learning models sit somewhere in the
middle of the scale. They usually show clearer gains than
the older metric-based ones, although the results aren’t
completely uniform across studies. The hybrid models —
the ones that mix engineered features with those learned
from data — are used as the upper reference point and set

to 100%. The intention behind this is simply to show the
general trend that keeps appearing in the literature. It isn’t
meant to suggest that the numerical distance between the
groups is precise or fixed in any strict sense.

Al tools now appear in parts of the engineering workflow
that previously were not considered especially suitable for
automation. Large language models, for instance, have been
tested on a wide range of tasks: interpreting or rewriting
requirements, generating tests, helping with parts of design,
locating bugs, and supporting maintenance work. Hou et al.
list more than fifty different uses of these models, ranging
from pulling pieces out of formal specifications to fixing
broken code and checking for security problems [8]. Part of
their appeal is that the same model can work with natural
language and with source code, without needing separate
systems. But the results they produce still depend a lot on
the datasets used for tuning or prompting. If the data are
uneven, or if some cases are poorly represented, the outputs
can shift in ways that aren’t easy to predict. Table 1 gives a
sense of how these issues show up in practice.

Table 1. Coverage of traditional vs. Al-mediated methods across the software engineering lifecycle

Lifecycle Stage | Traditional Methods Al-Mediated Methods
Requirements|e Manual stakeholder interviews ¢ LLM-based requirement summarization and rewriting
Engineering |e Text-based requirement documents |e Automated extraction of functional/non-functional requirements

¢ Rule-based extraction e Al-generated traceability links
Design ¢ UML diagrams and architecture models |e Al-assisted architecture suggestions

¢ Expert-driven design reviews e Pattern detection in design artefacts

e Automated consistency and constraint checks

Coding ¢ Manual code implementation ¢ LLM-based code generation (functions/classes)

e Basic IDE autocomplete « Semantic code completion (Copilot-like systems)

e Linters and static rule checks ¢ Automated refactoring and style harmonization
Testing e Manually written test suites ¢ Automated test case generation

e Static/dynamic analysis tools ¢ Bug prediction models (CNN, LSTM, GNN)

¢ Manual coverage evaluation e Al-driven fuzzing and vulnerability detection
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¢ Log inspection
e Human triage of issues

Deployment |e Manual CI/CD configuration ¢ Al-optimized pipeline configuration
e Script-based rollouts ¢ Automated detection of deployment risks
e Predictive rollout optimisation
Maintenance |e Manual debugging and patching e Al-suggested code repair

¢ Predictive maintenance & anomaly detection
¢ LLM-based debugging guidance

Table 1 shows where the traditional techniques and the
Al-based tools emerge in the various parts of the software-
engineering process. The point is not just to list the tasks but
to give a sense of how the reach of Al has been spreading
beyond its usual role in defect prediction. The traditional
techniques still lean heavily on manual checking and on
artefacts or rules that people prepare themselves; these are
familiar and easy to follow, but they take time and rely on
fairly specific expertise. The Al-oriented methods deal with
the same stages in a different way, adding automation and a
layer of semantic interpretation that the older tools didn’t
have. Large language models, for example, are now being
used to extract requirements or restate them when needed,
and several deep-learning systems are being applied to
automated testing and bug-prediction tasks. Some of the
generative tools have begun showing up in coding and
debugging tasks as well, and in a few cases even in parts of
maintenance. In the table, the stages are separated to show
where Al mostly works alongside existing practice — design
and deployment tend to fall in that group — and where it
begins to take over more routine pieces of the job, like low-
level coding or test generation. Looking at the lifecycle this
way helps make it clearer how Al affects not only model
accuracy but also how engineering work is divided and
organised.

At the practice level, Al-mediated engineering approaches
deliver measurable productivity and quality benefits. Survey
data from Alenezi and Akour show that 74% of practitioners
reportreduced coding time, 62% observe fewer post-release
defects, and 45% note improved team resource allocation
after adopting Al tools such as Copilot, IntelliCode, or Al-
driven test automation [3] . Some tool-specific studies point
to quite substantial improvements. For example, Snyk Code
reports noticeably better early bug detection—around a
40% gain—and a marked reduction in manual review time,
roughly by half. AlphaCode, working in a very different
context, reaches a success rate of about 65% on competitive
programming tasks and shortens prototyping cycles by close
to 40% [10]. These kinds of jumps are not what traditional
metric-based approaches typically deliver, which tend to
improve performance only gradually.

The move toward Al-mediated techniques, however, brings
its own set of complications. Giray et al. note that nearly half
of the deep-learning studies they reviewed (48%) do not
provide any reproducibility package, and this situation has
not improved over time [6]. Traditional methods do not face
this problem to the same degree because their assumptions
and evaluation steps are wusually straightforward to

reconstruct. Additional difficulties emerge along the lifecycle:
inconsistent data formats, skewed class distributions, a
tendency toward overfitting, and practical issues when
deploying or maintaining models. These are considerably
more involved than the challenges posed by older analytical
models [6].

When these tools are introduced in real engineering teams,
a different layer of concerns appears. Only a minority of
practitioners—about 40%—express full confidence in Al-
generated outputs, and the reasons they give are mostly
related to opacity and uncertainty about potential errors
[3]- The survey numbers also point to practical issues. Many
respondents mention skill gaps (58%) and the cost of getting
these toolsrunning (52%), both of which slow adoption. Banh
et al. note that generative systems are already shifting how
developers spend their time: instead of writing code from
scratch, more of the work goes into reviewing and steering
the system’s suggestions. This raises questions about how
skills evolve over time, how much teams end up depending
on automated tools, and whether these new routines fit well
with the workflows that organisations already use [4].

Another difficulty has to do with how scattered the current
set of Al tools still is. Alenezi and Akour note that even though
many of these tools do well on specific tasks—generation,
prediction, testing—most of them work in isolation and
do not pass information from one stage of the lifecycle to
another [3]. By contrast, traditional approaches are usually
part of larger frameworks that connect design, testing, and
maintenance, which makes the overall workflow easier to
keep together. Without some broader framework tying these
tools together, whatever improvements they make tend to
stay stuck in the single step they were built for. They do what
they are meant to do there, but very little carries forward
into the rest of the workflow.

Because of this, the difference between the older approaches
and the Al-oriented ones is less straightforward than it
seems at first. The traditional methods still give engineers
processes they can check and follow, and they usually sit
comfortably within the lifecycle structures teams already use.
The Al models contribute something else entirely: they can
reach higher accuracy, they pick up semantic or contextual
cues that the older metrics ignore, and they often shorten
pieces of work that normally take longer. But the trade-offs
are real. These systems depend heavily on data, on whether
an organisation can support them, and on people keeping a
close eye on how they behave. For now, the setups that mix
the two worlds — using engineered indicators alongside
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features the model learns on its own — seem to be the most
practical, adding to what the traditional techniques already
do instead of replacing them.

CONCLUSION

Developers have not so much moved from one clear set of
engineering methods to another as worked their way through
a slow and uneven shift. Older techniques, the ones built
around manually defined metrics and long-familiar analytical
steps, are still used in many places simply because people
know exactly what goes into them. Teams are also familiar
with how these older tools tend to behave, which makes
them easy to work with, but their shortcomings become
noticeable once they are used on newer systems. Many of
these systems operate in ways that cannot be captured by a
small set of structural metrics, and the gap between what the
tools measure and what the system actually does has only
widened as software has grown in size and complexity.

More recent Al-based approaches come at the problem from
a different direction. Rather than working with a fixed set of
indicators, they try to learn patterns straight from the code
and from the artefacts surrounding it. A lot of these patterns
are difficult to spell out in fixed rules, which is part of the
reason deep models and language-based systems often do
better on prediction tasks. They can also help with routine
work, such as suggesting where a problem might sit or
narrowing down the part of the code that needs attention.
But the advantages come with their own complications. A
model’s behaviour can shift quite a bit depending on the data
it has seen, and it is often not obvious how it arrived at a
particular output. Teams also run into the simple problem of
trying to fit these tools into workflows that were set up long
before anyone imagined using systems like this. On top of
that, a number of studies mention trouble repeating results,
especially when the information about how the model was
trained or which datasets were involved is incomplete or
only briefly described.

When the different results from the studies are put side
by side, the picture that emerges is not one where a
single approach clearly wins. The older methods still give
engineers something steady to work from, and many rely on
that familiarity when making decisions. The newer Al tools
contribute something quite different — they notice patterns
and contextual signals that the older metric sets never really
captured. What seems to work best for now is not choosing
one over the other but combining them in a way that lets
each cover the gaps of the other. When engineered features
are used along with what the models learn from data, the
two parts tend to support each other rather than compete.
It is less a matter of replacing one tradition with another
and more of finding a mix that people can actually use in
everyday practice.

Several directions for future research are becoming
increasingly clear, although none of them have been explored

in a consistent way. One of the more immediate needs is to
understand how the various Al tools now used in software
engineering can be linked so that information generated
at one stage is not lost by the next. At the moment, code
generators, defect predictors, and testing systems are typically
introduced as separate additions to existing workflows,
which means they rarely benefit from one another’s outputs.
Reproducibility remains a persistent point of friction in the
literature. Quite a few deep learning papers show strong
numerical results, but the data or model setups behind them
are not always available in a form that others can actually
use. Sometimes the dataset versions differ from what is
described; in other cases, the training details are scattered
across supplementary files or missing altogether. Without
more stable conventions for sharing these materials, it
becomes difficult to judge how much progress is being made
or to repeat earlier experiments with any confidence.

Concerns about transparency continue to surface in
practice, and they tend to slow down adoption more than
the performance numbers would suggest. In settings where
safety rules or compliance checks are tight, engineers
often hesitate to bring in models whose reasoning cannot
be inspected in a straightforward way. This hesitation is
not surprising, since the consequences of relying on an
opaque system can be significant. Currently, it is still unclear
which interpretability techniques can actually be trusted
in everyday engineering practice. The longer-term impacts
of working with Al tools have received little systematic
attention, and much of the available evidence is anecdotal
or scattered. Looking more closely at these areas could help
reveal how Al might contribute to a more continuous and
integrated development process..
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