

Strategic Management of IT Projects in the Context of Digital Transformation: Synthesis of Agile Methodologies, Process Automation, and a Human-Centered Approach

Vitalii Yakymenko

Agency Owner, Private Entrepreneur, Parma, Ohio, USA.

Abstract

The article attempts a theoretical and practical conceptualization of a comprehensive paradigm for managing contemporary IT projects under conditions of continuous digital transformation. The purpose of the study is to develop and substantiate a holistic integrative management model based on the synthesis of three interrelated components: adaptive development methodologies, business process automation (BPA), and human-centered design of user experience and interfaces (UX/UI). The methodological basis of the study comprises a systematized analysis of academic publications and industry analytical reports, as well as qualitative interpretation of empirical data using the case method. The results obtained demonstrate that the highest indicators of operational efficiency and return on investment (ROI) are achieved not through the fragmentary application of individual tools or approaches, but through their purposeful, well-considered, and coordinated integration into a single managerial architecture. Agile and hybrid methodologies provide an adaptive framework for managing risks and uncertainty; business process automation ensures a qualitative leap in productivity and a reduction in transaction costs; a focus on UX/UI serves as a key precondition for user adoption of technological solutions and, consequently, for the materialization of the business value embedded in them. The study concludes that an important foundation for the effective integration of the specified components is strategic leadership, as well as the development within management teams of strong skills and business acumen. The propositions and conclusions presented may be practically useful for heads of IT departments, project managers, and business analysts focused on increasing the predictability, controllability, and value effect of technological initiatives.

Keywords: *IT Project Management, Agile, Business Process Automation, UX/UI, Risk Management, ROI, Digital Transformation, Hybrid Methodologies, Scrum, Human-Centered Design.*

INTRODUCTION

The contemporary business environment is characterized not only by an unprecedented pace of technological change, but also by the de facto inevitability of continuous digital transformation. Organizations across all sectors of the economy are compelled to radically rethink established operating models in an effort to preserve and strengthen their competitive positions under conditions of structural uncertainty. Under these conditions, IT projects lose the status of an auxiliary tool and are transformed into a key mechanism of strategic development. Analytical reviews by McKinsey & Company show that, despite macroeconomic turbulence, long-term demand for technological competencies is steadily increasing, which is largely driven by the emergence and scaling of breakthrough technologies, in particular generative

artificial intelligence [1, 2]. Simultaneously, Deloitte research for 2024 records a qualitative transformation of investment priorities: companies are shifting away from radical, high-risk bet-the-business type transformations and are redirecting their focus toward more pragmatic, value-oriented initiatives – the modernization of critical systems, the launch of digital product lines, and the targeted improvement of operational efficiency [3]. As a result, pressure on IT projects increases, with stakeholders expecting not merely limited technical implementation, but a demonstrable, measurable contribution to the achievement of strategic and tactical business outcomes.

Although the academic literature provides sufficiently detailed coverage of individual aspects of IT project management – the implementation of agile methodologies

Citation: Vitalii Yakymenko, "Strategic Management of IT Projects in the Context of Digital Transformation: Synthesis of Agile Methodologies, Process Automation, and a Human-Centered Approach", Universal Library of Innovative Research and Studies, 2025; 2(3): 75-82. DOI: <https://doi.org/10.70315/ulap.ulirs.2025.0203014>.

(Agile), user experience design (UX), and business process automation (BPA) – there is an evident research gap related to their integrated and systemic conceptualization. Existing studies are predominantly fragmented: each of the aforementioned domains is considered in isolation, either through the lens of applied technical implementation issues or from the perspective of high-level strategic advantages. As a consequence, there is no holistic integration model that would describe the synergistic effect of their joint application and define a framework for managing an IT project as a unified value creation system.

The initial **authorial hypothesis** is that the maximum effectiveness of IT projects under current conditions is achieved not through the selection of a single optimal methodology, but through the construction of an adaptive management system. Such a system should entail a strategically calibrated combination of the iterative flexibility of Agile approaches, demonstrable efficiency gains resulting from BPA, and sustainable productivity improvements driven by human-centered UX design. In essence, such an integrated approach may be interpreted as a comprehensive risk management architecture aimed at maximizing tangible business value while simultaneously reducing the likelihood of unsuccessful project implementation.

The purpose of the present study is to develop and theoretically substantiate the specified integrated model for IT project management.

The scientific novelty of the study is manifested in the formation of a synthetic conceptual framework that links three key domains (Agile, BPA, UX) into a single strategy for value creation and risk management, as well as in the empirical verification of the proposed model based on the analysis of real practical cases.

MATERIALS AND METHODS

The methodological basis of the study has an integrated character and relies on two mutually complementary components, which makes it possible to ensure simultaneously a high degree of theoretical elaboration and the practical significance of the results obtained.

The first component is a systematic literature review. Within this approach, a targeted analysis was carried out of peer-reviewed scientific articles, monographs and proceedings of specialized conferences. The source base was formed on the basis of leading international scientific catalogs, including IEEE Xplore, ACM Digital Library, SpringerLink, as well as on the basis of authoritative industry reports of major consulting companies (Gartner, McKinsey & Company, Deloitte). The use of this method made it possible to construct the theoretical framework of the study, to identify the key concepts, the dominant research directions, relevant technological and managerial trends, as well as to record existing problems and contradictions in the field of IT project management.

All identified sources were structured into two categories: academic publications providing a fundamental theoretical and methodological foundation (including studies on risk management in Agile environments and related approaches), and analytical reports providing the current market context, empirical statistical datasets and forecast scenarios of technological development.

The second component of the methodology is the analysis of practical cases. This approach was used for empirical verification, specification and illustration of the theoretical propositions formulated on the basis of the systematic literature review. As the empirical basis, data were used on four IT projects implemented by a specialized agency. These cases represent a wide range of tasks in contemporary IT development: redesign of a complex internal CRM system with an emphasis on user experience (UX), automation of order processing procedures in order to increase operational efficiency, development of internal reusable software components within a platform-based approach, as well as the creation of a concept for a new IT product, a time-tracking tool. The application of the case-study method made it possible to analyze real managerial decisions, to identify the main success factors and existing barriers, and to demonstrate the practical feasibility and effectiveness of the proposed integrated management model.

The combination of a systematic literature review and qualitative case analysis ensures methodological triangulation, increases the reliability and validity of the conclusions and makes it possible to formulate multidimensional, conceptually grounded results that organically link theoretical constructs with the practice of contemporary IT project management.

RESULTS AND DISCUSSION

The evolution of methodological approaches to project management in the IT environment does not demonstrate an instantaneous paradigm shift, but rather a gradual drift from rigidly regulated predictive models of the Waterfall type toward iterative and adaptive systems, the most representative of which is Agile [7]. At the same time, empirical evidence from the contemporary industry suggests that this does not involve a radical displacement of one logic by another. On the contrary, the emerging practice indicates the dominance of hybrid configurations, within which an attempt is made to combine the advantages of both traditions: strategic predictability, planning, and formalized control, which are characteristic of classical methodologies, with the flexibility, high responsiveness, and focus on continuous feedback from the customer that are inherent in Agile [8].

The formation of such synthetic models is largely driven by the recognition that the very nature of Agile, oriented toward embracing change, incremental delivery of value, and operation under conditions of structural uncertainty,

creates a specific profile of project risks that requires the use of specialized tools for their management [5]. Systematic reviews of scholarly and applied literature in recent years record a shift in the research agenda toward the development of comprehensive frameworks that provide explicit and methodologically consistent integration of risk management procedures into Agile processes [4]. Unlike traditional predictive models, in which the identification, assessment, and response planning for risks are concentrated mainly in the initiation phase of the project, in Agile the logic of risk management becomes continuous and recursive and is

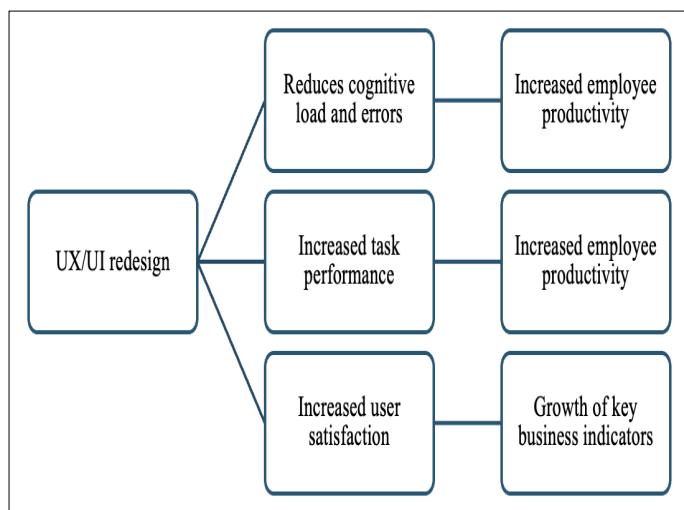
embedded in each iteration cycle (sprint). For Agile sprints, the following typical groups of risks are systematically distinguished: constant changes in requirements, communication gaps and ineffective communication, team overload, difficulties in integrating results, and deviations from the agreed sprint goals [10]. Hybrid models that combine elements of long-term planning and formalized control while maintaining a high degree of team adaptability make it possible to purposefully mitigate the above risks. A comparative analysis of approaches to risk management in various methodologies is presented in Table 1.

Table 1. Comparative analysis of risk management approaches in traditional and agile methodologies (compiled by the author based on [4, 10]).

Phase	Traditional (Waterfall) approach	Agile approach	Hybrid synthesis
Risk identification	Primarily at the initial stage; development of an exhaustive risk register.	A continuous process within each sprint (for example, during daily stand-ups and retrospectives).	Initial high-level risk definition at the release planning stage, followed by continuous elaboration and identification of new risks in each sprint.
Risk assessment	Formal quantitative and qualitative assessment of probability and impact prior to project initiation.	Rapid, often informal risk assessment by the team in real time; prioritization according to the degree of impact on sprint objectives.	Combination of formal assessment of strategic risks and flexible tactical assessment of operational risks at the iteration level.
Response planning	Development of detailed response plans for each identified risk.	Adaptive response; inclusion of risk mitigation tasks directly in the sprint backlog.	Development of strategic response plans for key risks and granting the team autonomy for tactical response to emerging issues.
Monitoring and control	Periodic review of the risk register at project control points.	Daily monitoring through Scrum artifacts (boards, burndown charts) and team ceremonies.	Use of formal reports for stakeholders alongside daily operational control by the team.

The tendency toward hybridization in contemporary development practices does not indicate a crisis of the Agile approach; on the contrary, it points to its transition to a stage of maturity. At the early stages of Agile diffusion, an almost dogmatic rejection of heavyweight methodologies, including formalized risk management, often prevailed. In current practice, however, there is a shift toward a more pragmatic position: genuine flexibility is impossible without reliance on structured control and systematic, proactive risk mitigation. The objective is not to eliminate processes as such, but to streamline them, to fine-tune them to the iterative nature of development, and to deeply integrate them into the team's everyday work cycle, for example, through regular discussion of risks in the context of sprint planning [12].

A telling example of such a synthesis of manageability and adaptability is the experience of an internal agency that developed reusable and documented packages for data synchronization tasks. Formally, such a practice can be interpreted as a deviation from the Agile principle that a working product is more important than exhaustive documentation [13]. In essence, however, this is a

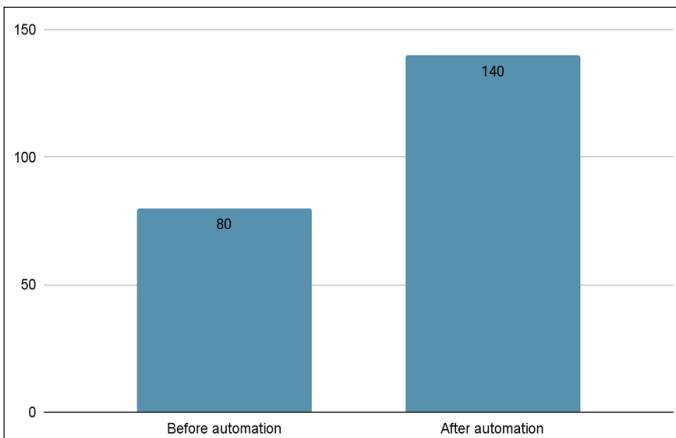

manifestation of a mature hybrid model: a standardized, controlled architectural element (a package) is created, which functions as a supporting asset and makes it possible to radically reduce time and resource costs in the implementation of subsequent projects. This ensures a transition from local optimization of speed at the level of an individual project to a sustainable increase in efficiency at the level of the entire development program.

Human-centered design in this context can be viewed as a factor of productivity and technology adoption. In the conditions of the modern experience economy, user experience (UX) and user interface (UI) design ceases to be perceived as a secondary, predominantly aesthetic dimension and becomes an instrument of direct influence on the operational performance of an organization. The main premise is that a carefully designed, intuitively understandable interface reduces the cognitive load on the user, decreases the frequency of errors, and shortens the time required to perform key operations, which ultimately leads to a measurable increase in labor productivity [14]. This at first glance soft characteristic is in fact well

amenable to operationalization and quantitative analysis using standardized methods such as the System Usability Scale (SUS), which provides a numerical assessment of the subjective perception of product usability [16].

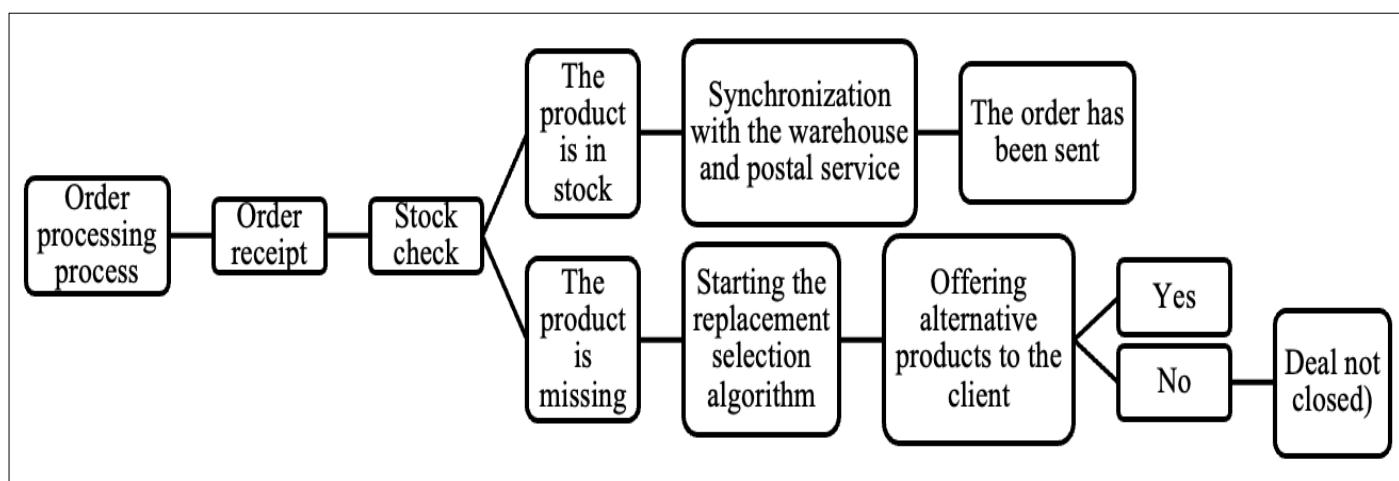
A representative empirical example of the implementation of a human-centered approach is the case of redesigning the internal CRM system of a company operating in the field of IP telephony. The central goal of the project was formulated as a deep elaboration of UX in order to increase the share of ease of use and to enhance the intuitive comprehensibility of the product. Thus, a strategic emphasis on human-centered design was explicitly articulated. The subsequent success of the company, including the receipt of industry awards and the growth of business activity, can be directly associated with the increase in the efficiency of managers' work in the modernized system. The simplification of complex work scenarios and the reduction of the entry threshold for new employees freed up both temporal and cognitive resources, which were reallocated to address more complex and higher-level business tasks.

This case illustrates and confirms the key trends of 2024–2025, which emphasize the importance of data-driven design as well as the priority of ensuring the accessibility of digital products for the widest possible range of users [17]. The conceptual model of the impact of UX improvements on the operational metrics of an organization is presented in Fig. 1.


Fig. 1. Model of the impact of UX improvements on key performance indicators (KPI) of operational activities (compiled by the author based on [8–11; 15, 24, 25]).

For a long time, user experience (UX) was perceived as a local property of an individual function or screen within a software product. However, in the context of complex corporate platforms of the CRM and ERP class, it already acts not as a tactical, but as a strategic resource that determines the integral return on investment (ROI) in the entire system. Even a high-tech and architecturally flawless solution, in the case of unsatisfactory UX, inevitably faces a low level of user adoption and a fragmented, inefficient use

of functionality, which in fact nullifies the intended economic effect. Gartner reports note that one of the key barriers to the implementation of AI technologies is the difficulty of convincingly demonstrating their value for business; this problem is exacerbated by cumbersome and non-intuitive interfaces that prevent employees from fully using the tools provided [6]. As a result, a project may be formally recognized as successful in terms of schedule and budget, but at the same time be qualified as a failure if the system has been implemented but is practically not used in operational activities, which is precisely the type of failure highlighted in the classic CHAOS report by the Standish Group [18, 19]. The main cause of such scenarios is the low level of acceptance by end users. Consequently, investments in UX should be interpreted not as an expense for aestheticizing the interface, but as a project risk management tool aimed at reducing the likelihood of failure due to user rejection. In this context, the agency's decision to treat UX as a priority area in the CRM implementation project represents not a design choice, but a strategic choice that ensures sustainable value and long-term effectiveness of the technological investment.


Business process automation (BPA) and its more advanced form, hyperautomation, understood as the convergence of robotic process automation (RPA) and artificial intelligence (AI), are, in today's conditions, among the most powerful mechanisms for increasing the operational efficiency of organizations [20]. Empirical data show that the introduction of these technologies leads to a substantial, quantitatively measurable increase in return on investment (ROI): companies record a reduction in operating costs of up to 40% and a decrease in the duration of key processes of up to 50% [20]. At the same time, the degree of success of BPA projects critically depends on the correct choice of technological platform. Contemporary methodological frameworks for evaluating solutions in the field of BPA uniformly emphasize security and regulatory compliance, scalability, and operational reliability as critical criteria, including them in the list of top-level priorities [21].

A telling example of the potential of BPA is the case of automating the order processing workflow in a trading company. In the initial situation, a single employee was able to manually process about 30–40 orders per day. After the implementation of an integrated solution that included the integration of the CRM system with warehouse subsystems, coordination systems, and postal services, individual productivity increased to 120–150 orders per employee. This corresponds to an increase in labor productivity of approximately 300%, which allowed the organization not only to handle the increased volume of incoming orders, but also to optimize staff numbers, thereby further reducing operating costs. The comparative productivity dynamics are presented in Fig. 2.

Fig. 2. Comparative analysis of labor productivity before and after the implementation of the automation system (author's data).

The implemented innovative module, the product substitution system, requires a separate analysis and can be regarded as a local example of intelligent automation. In the absence of the requested item in the warehouse, the system automatically generated a selection of alternative products in a comparable price range, differing only in non-material parameters (for example, color or brand) that do not change the overall consumer value of the offer for the customer. The functionality was purposefully designed to solve a specific business task, namely to minimize sales losses arising from the unavailability of the required product. As a result of its implementation, the share of successfully closed deals increased significantly, which had a direct positive impact on the company's revenue. The process model of the operation of the automated system is presented in Fig. 3.

Fig. 3. Process model of an automated order processing system (compiled by the author based on [1, 18, 20, 22]).

Creation of sustainable IT assets: internal products and platform solutions. Strategically mature IT organizations are gradually moving away from the paradigm of implementing single, weakly interconnected projects in favor of forming long-lived, repeatedly used IT assets. This development trajectory, often described as a platform approach, presupposes the purposeful development of internal products, libraries, and modular components that can serve as a foundation for a wide range of subsequent solutions. As a result, both the marginal costs of new developments and the time to market for solutions are reduced. This logic is organically aligned with contemporary trends in software engineering, including the industrialization of machine learning and the transition to a new generation of software systems in which component reuse acts as a key mechanism for increasing production and organizational efficiency [1].

An analysis of the activities of the IT agency under consideration makes it possible to identify two of the most illustrative cases of applying this approach. The first is associated with the development of packages (software bundles) for synchronizing data with inventory accounting systems. These packages, stored in an internal repository, constitute a typical example of a replicable IT asset. Instead

of designing and implementing integration functionality from scratch each time to meet the needs of another client, the team relies on an already existing, tested component described in the accompanying documentation. This leads not only to a significant reduction in labor costs and calendar development time, but also to increased predictability of quality and reliability of the final solution.

The second example is an initiative to create an in-house product in the form of a time-tracking tool. This project illustrates the full life cycle of an internal product: from the emergence of an idea directly stemming from a specific business problem (lack of transparency in assessing remote employment and productivity) and the formulation of an MVP (Minimum Viable Product) concept to the development of a strategy for attracting external financing for its subsequent large-scale refinement and commercialization.

The reorientation towards a platform approach is accompanied not only by the emergence of additional success drivers but also by the appearance of specific constraints and risks that must be taken into account in managerial and engineering decisions. In Table 2 a systematized analysis of these factors is presented, linked to the practical activities of the IT agency under consideration.

Table 2. Success factors and barriers in implementing a platform-based approach in an IT agency (compiled by the author based on [22, 23]).

Factor/Barrier	Description	Significance for the client agency	Recommended action
Success factor: Strategic vision	Management is aware of the long-term benefits of creating assets rather than only delivering projects.	The agency is already moving in this direction by creating packages and planning a product.	Formalize the product strategy and allocate resources to R&D that are not tied to current client projects.
Success factor: Modular architecture	Software components are developed as independent, loosely coupled modules, which simplifies their reuse.	The creation of packages is a practical step toward modularity.	Implement unified design and documentation standards for all reusable components.
Barrier: Initial investments	Platform creation requires substantial upfront time and resource costs without immediate financial returns.	The development of packages and a time tracker diverts resources from paid client projects.	Use a staged investment model: start with small, most in-demand components and reinvest part of the profit from projects in platform development.
Barrier: Organizational resistance	Developers may prefer to create solutions from scratch rather than use and maintain existing components.	Not specified, but is a typical risk for any team.	Introduce an incentive system that encourages the use of and contribution to the shared code base. Conduct internal demonstrations of the advantages of the platform-based approach.

The analysis performed makes it possible to integrate the previously examined disparate elements into a holistic model of IT project management oriented toward maximizing the business value created. Its foundation lies in the recognition that, in the contemporary digital environment, sustainable success cannot be ensured by reliance on a single factor, whether this is the chosen methodology, the set of technologies, or the quality of human capital. The project outcome emerges as a property of a complex sociotechnical system in which methods, tools, and people are in a state of coordinated, synergistic interaction.

The formation of such a system is hindered by a number of serious constraints. Among these are accumulated technical debt, the high complexity of integration with legacy infrastructure, as well as pronounced organizational resistance to transformations, which research consistently records as one of the key barriers to the implementation of Agile practices [13]. Statistical data only underscore the scale of the problem: a significant share of IT projects still fails to achieve the stated objectives, and in the area of implementing solutions based on artificial intelligence, according to Gartner, only 48% of initiatives reach the stage of stable productive operation [6].

The results of studies conducted by leading professional organizations, including the Project Management Institute (PMI), demonstrate a shift in emphasis: the outcome of a project is increasingly determined not by technical but by human competencies. In the Pulse of the Profession report series, the concept of strong skills is introduced, encompassing communication competence, collaborative leadership, the ability to solve complex problems, and strategic thinking [26, 27]. These competencies are no longer viewed as secondary soft skills and acquire the

status of critically important capabilities. It is indicative that organizations that systematically invest in developing these skills within project teams encounter project failures 63% less frequently [28].

At a superordinate level relative to the strong skills is business acumen, understood as the project manager's ability to interpret the project within an expanded business context, align its objectives with the corporate strategy, and make managerial decisions primarily based on criteria of value creation rather than solely on the logic of the iron triangle (time, budget, scope) [29]. It is business acumen that transforms the project manager from a tactical executor into a strategic business partner. The successful implementation of the examined cases and the agency's recognition at the regional level (4th place in the ranking) serve as empirical confirmation of the presence of these qualities within its management team.

The integrated model represents a visualization of this synthesis. Its base is the foundation of strategic leadership, manifested through the development of strong skills and business acumen. On this foundation, three interrelated pillars are formed that jointly ensure value creation:

1. Adaptive methodology: the use of hybrid approaches that integrate the flexibility of Agile with the necessary level of managerial control for proactive risk management.
2. Process efficiency: the application of BPA and automation tools aimed at a substantial increase in productivity and a reduction in operating costs.
3. Human-centered approach: the prioritization of UX/UI as a key mechanism that ensures user adoption of technologies and, as a result, the realization of the business value embedded in these technologies.

This model does not serve as a prescriptive instruction but functions as a conceptual framework that provides managers with the possibility of a holistic assessment and purposeful formation of an IT project management system capable of adequately responding to the challenges of the modern digital economy.

CONCLUSION

The conducted study empirically and conceptually confirms the initial hypothesis that the success of contemporary IT projects is determined not by the choice of a single correct tool or methodology, but by the formation of a holistic, dynamically adjustable management system. The proposed integrated model, which combines adaptive methodological approaches, process automation, and human-centered design based on strategic leadership, demonstrates internal consistency and applicability both at the theoretical level and in a practical context.

The key findings of the study can be summarized as follows:

- there is a systemic shift from the use of pure methodologies to hybrid management configurations that provide the necessary compromise between adaptability and predictability. Such a balance is critically important for effective risk management in the highly turbulent environment of IT project implementation, where excessive rigidity reduces response speed, while excessive flexibility undermines controllability.
- human-centered design (UX/UI) has transformed from an auxiliary, largely decorative component into a strategic resource that directly influences the technological choices made by end users, their level of productivity, and ultimately the overall return on investment (ROI) of the project. In this sense, investment in UX functions as a specific form of mitigating the risk of project failure caused by its rejection by users.
- business process automation (BPA) retains the status of one of the most effective instruments for achieving measurable improvements in operational efficiency. It enables organizations not only to substantially reduce costs, but also to create new sources of value, including through the reduction of lost sales and other indirect losses.

The unifying foundation of the technological and methodological components mentioned above is the strong skills and business acumen of the management team. It is precisely these competencies that ensure the correct prioritization, productive communication patterns, and the maintenance of sustainable alignment between IT initiatives and the strategic goals of the business.

The practical significance of this work lies in the fact that the proposed integrated model can be used by IT leaders and business leaders both as a diagnostic tool and as a transformation roadmap. It makes it possible to conduct a targeted audit of existing project management practices, identify their vulnerabilities and areas of misalignment

with strategic guidelines, as well as outline trajectories for transitioning to a more holistic, value-oriented approach to managing technological investments.

Several key vectors can be identified as promising directions for further research. First, it is of interest to develop quantitative models of the interrelationships between the elements of the proposed conceptual framework, in particular to assess the impact of the volume and structure of investments in UX on long-term employee retention indicators. Second, further elaboration is required for the analysis of the impact of breakthrough technologies, and above all generative AI, on project management processes, with a special emphasis on the stages of risk identification and requirements formalization in the context of hybrid Agile frameworks.

REFERENCES

1. Technology Trends Outlook 2024 - McKinsey [Electronic resource]. - Access mode: <https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/the%20top%20trends%20in%20tech%202024/mckinsey-technology-trends-outlook-2024.pdf> (date accessed: 09/05/2025).
2. McKinsey technology trends outlook 2025 [Electronic resource]. - Access mode: <https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-in-tech> (date accessed: 09/07/2025).
3. Tech investment shifts in 2024 | Deloitte Insights [Electronic resource]. - Access mode: <https://www.deloitte.com/us/en/insights/topics/digital-transformation/where-are-organizations-getting-the-most-roi-from-tech-investments.html> (date accessed: 09/10/2025).
4. Pilliang M., Munawar M. Risk management in software development projects: A systematic literature review //Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika. - 2022. - Vol. 8 (2). <https://doi.org/10.23917/khif.v8i2.17488>.
5. Borkar R., Agarwal A., Deora R. Risk Migration in Agile Program Management: A Systematic Review of Current Mitigation Approaches //International Journal of Computer Applications. - Vol. 975. - pp. 10-16.
6. Gartner Survey Finds Generative AI Is Now the Most Frequently Deployed AI Solution in Organizations [Electronic resource]. - Access mode: <https://www.gartner.com/en/newsroom/press-releases/2024-05-07-gartner-survey-finds-generative-ai-is-now-the-most-frequently-deployed-ai-solution-in-organizations> (date accessed: 09/12/2025).
7. Hulugh T., Emmanuel B. Agile Project Management in Developing Business-Centric Information Systems. - 2024. - Vol.5 (11) - pp. 5083-5098.
8. Marnewick C., Marnewick A. L. Project managers' ability

- to explore and exploit predictive and iterative best practices //International Journal of Managing Projects in Business. – 2023. – Vol. 16 (8). – pp. 126-151. <https://doi.org/10.1108/IJMPB-01-2023-0013>.
9. Goswami V. The Effectiveness of Risk Management in Project Success. – 2024. – 85 p.
 10. PÉREZ-CASTILLO Y. J., ORANTES-JIMÉNEZ S. D. Futures Perspectives: Risk Analysis in Agile Sprints through Problem Detection. – 2024. – pp.68-71.
 11. Elkhatib M. et al. Agile project management and project risks improvements: Pros and cons //Modern Economy. – 2022. – Vol. 13 (9). – pp. 1157-1176.
 12. Buganová K., Šimíčková J. Risk management in traditional and agile project management //Transportation Research Procedia. – 2019. – Vol. 40. – pp. 986-993. <https://doi.org/10.1016/j.trpro.2019.07.138>.
 13. Setiawan R. H., Sakapurnama E. Critical Success Factors and Challenges in Applying Agile Project Management: A Systematic Literature Review //International Journal of Science and Society. – 2025. – Vol. 7 (2). – pp. 28-40.
 14. The Impact of User Interface Design on User Experience and Productivity - Medium [Electronic resource]. - Access mode: <https://medium.com/@uidesign0005/the-impact-of-user-interface-design-on-user-experience-and-productivity-bfa12ea89b11> (date accessed: 09/15/2025).
 15. Lewis J. R., Sauro J. Usability and user experience: Design and evaluation //Handbook of human factors and ergonomics. – 2021. – pp. 972-1015.
 16. Gronier G., Baudet A. Psychometric evaluation of the F-SUS: creation and validation of the French version of the system usability scale //International Journal of Human-Computer Interaction. – 2021. – Vol. 37 (16). – pp. 1571-1582.
 17. The Evolution of UX/UI: Trends That Are Redefining Design [Electronic resource]. - Access mode: <https://medium.com/@CarlosSmith24/the-evolution-of-ux-ui-trends-that-are-redefining-design-e29fdab46ca1>
 18. Tewari P. UX Principles for Modern UI/UX Design and Their Measurement: A Framework for Digital Product Excellence //Journal of Computer Science and Technology Studies. – 2025. – Vol. 7 (7). – pp. 898-907. <https://doi.org/10.32996/jcsts.2025.7.7.99>.
 19. Rêgo B. S. et al. Digital transformation and strategic management: A systematic review of the literature //Journal of the Knowledge Economy. – 2022. – Vol. 13 (4). – pp. 3195-3222.
 20. Hall C. Hyper-automation in Enterprises: Where AI Meets RPA for Maximum ROI //MULTIDISCIPLINARY JOURNAL OF INSTRUCTION (MDJI). – 2024. – Vol. 7 (1). – pp. 230-246.
 21. Sampath S. et al. A generalized decision support framework for large-scale project portfolio decisions // Decision Sciences. – 2022. – Vol. 53 (6). – pp. 1024-1047.
 22. Department of Computer Science Self-Study Report 2022-2023 [Electronic resource]. - Access mode: <https://lehrman.edu/office-academic-programs/documents/Computer-Science-Self-Study-Report-2022-2023.pdf> (date accessed: 09/15/2025).
 23. Nenni M. E. et al. How artificial intelligence will transform project management in the age of digitization: a systematic literature review //Management Review Quarterly. – 2025. – Vol. 75 (2). – pp. 1669-1716.
 24. Ndou V., Ingrosso A., Di Girolamo A. Framework for Agile Transformation: Guiding Organizations Through Cultural, Structural, and Competency Shifts in Project Management //Administrative Sciences. – 2024. – Vol. 14 (11). <https://doi.org/10.3390/admsci14110301>.
 25. Judijanto L. et al. Edge of enterprise architecture in addressing cyber security threats and business risks // International Journal Software Engineering and Computer Science (IJSECS). – 2023. – Vol. 3 (3). – pp. 386-396.
 26. Bahi A., GHARI J., Gahi Y. Integrating Generative AI for Advancing Agile Software Development and Mitigating Project Management Challenges //International Journal of Advanced Computer Science & Applications. – 2024. – Vol. 15 (3). – pp. 54-61.
 27. Pulse of the Profession® 2023: Power Skills, Redefining Project Success | 14th Edition [Electronic resource]. - Access mode: <https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pmi-pulse-of-the-profession-2023-report.pdf> (date accessed: 09/20/2025).
 28. Pulse of the Profession® 2023, 14th Edition | PMI [Electronic resource]. - Access mode: <https://www.pmi.org/learning/thought-leadership/power-skills-redefining-project-success> (date accessed: 09/21/2025).
 29. PMI – Pulse of the Profession 2025 [Electronic resource]. - Access mode: https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse_of_the_profession_2025-1.pdf (date accessed: 09/21/2025).