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In contemporary software engineering, expert code review practices have entered a phase of profound reconsideration 
under the influence of generative artificial intelligence technologies. In 2024–2025, a qualitatively new, exponential stage of 
integrating large language models (LLM) into the software development life cycle (SDLC) is being observed, which radically 
changes the balance between development speed, quality assurance, and the security of software systems. The aim of the 
study is to provide a comprehensive assessment of the effectiveness of using AI to automate Code Review processes, to 
analyze how such technological interventions modify software quality metrics, and to identify latent risks conditioned by 
the human factor. The focal point is the phenomenon of the productivity paradox: the acceleration of code writing with AI 
assistants leads to the review and deployment stages becoming the bottleneck, where the throughput of the team in fact 
decreases. Based on quantitative indicators, it is demonstrated that the introduction of AI correlates with a 7,2% decrease 
in delivery stability and an increase in architectural technical debt, while developers themselves subjectively interpret 
what is happening as an increase in their own productivity. Particular emphasis is placed on a comparative analysis of 
traditional static application security testing (SAST) tools and LLM agents, on identifying specific vulnerabilities induced by 
neural network models (including the impact of politically charged triggers on code security), as well as on examining the 
cognitive effects of AI use for experienced software engineers. It is shown that experts may lose up to 19% of their working 
time when involving AI in solving complex tasks due to the need for additional verification and correction of contextual 
model hallucinations. The article proposes a scientifically grounded typology of errors generated by AI and formulates 
recommendations for transitioning to agentic workflows in which AI functions not only as a generator of code fragments, 
but also as an interactive verifier of developer intentions, operating in a mode of close human–machine synergy.

Keywords: Digital Transformation, Organizational Management, Information Technologies, Management Efficiency, 
Digital Platforms, Business Processes, Data Analysis, Innovative Development.

Abstract

Introduction

Historically, code review has been one of the most resource-
intensive and at the same time key stages of the software 
development life cycle. Classical approaches, stemming 
from formalized procedures of manual code inspection 
and asynchronous reviews via pull requests (PR), in fact 
performed the role of the primary filter preventing defects 
from reaching the production environment. The emergence 
and mass adoption of generative AI tools — GitHub Copilot, 
Amazon Q, as well as a wide range of Transformer-based 
models (GPT-4, Claude 3.5, DeepSeek) — have radically 
changed the economics of code production. If for decades 
the bottleneck of the SDLC remained the direct act of writing 
code, then by 2024, under conditions in which AI is capable of 

generating within seconds thousands of lines of syntactically 
correct program constructs, the limiting factor becomes the 
human ability to read, make sense of, and verify this code 
[1].

As a result, a shift of the basic paradigm is observed: the 
emphasis moves from the actual acts of coding to reviewing, 
meaningful integration, and orchestration of artifacts created 
both by developers and by models. This leads to a sharp 
increase in the workload on senior developers and team 
leads, who have to process a significantly increased flow of 
changes. Empirical data show that the share of rewritten or 
deleted code reaches historical maxima, which is interpreted 
as an indicator of declining quality of the initial generation 
and the need for multiple iterations of corrections [3]. In this 
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configuration, the automation of Code Review ceases to be 
an optional process improvement and turns into a structural 
condition for maintaining the operability and resilience of 
engineering teams.

The relevance of the problem under consideration is 
determined both by the technological maturity of generative 
models and by the depth of their penetration into industrial 
development processes. According to the Stack Overflow 
Developer Survey 2024, which covered more than 45 000 
respondents, the attitude of professional developers toward 
AI tools remains predominantly positive: 72% of respondents 
evaluate their use favorably [2]. At the same time, the 
dynamics of sentiment indicate a phase transition from 
enthusiastic acceptance to cautious pragmatism: data for 
2025 record a decrease in the share of positive assessments 
from 70% to 60%, which reflects the accumulated 
experience of encountering the real limitations and costs of 
the technology [5].

The key statistical indicators describing the landscape of 
2024 demonstrate a high level of penetration of AI tools. More 
than 97% of developers in the USA, Brazil, Germany, and India 
report using them in their everyday work. At the same time, 
a pronounced geographical asymmetry of corporate support 
is observed: in the USA 88% of companies encourage the use 
of AI, whereas in Germany the corresponding figure is only 
59%, which, with a high degree of probability, is associated 
with strict regimes for the regulation of privacy and data 
protection [6]. At the level of subjective assessments, 82,7% 
of developers are convinced that AI increases their individual 
productivity, and 60,8% note an acceleration of the process 
of learning and mastering new technologies [4]. However, the 
objective DORA (DevOps Research and Assessment) metrics 
indicate a more complex picture: a 25-percent increase in 
the scale of AI adoption correlates with a 1,5% decrease in 
delivery throughput and a 7,2% decline in delivery stability.7 
In other words, the subjective feeling of acceleration does not 
automatically convert into an improvement of aggregated 
organizational indicators.

Against this background, a specific crisis of trust is emerging. 
With a high level of AI usage, 67,8% of developers at the 
same time report distrust of its results, pointing to the lack 
of context of the code base as the key factor [4]. A cognitive 
dissonance arises: the tools are used for the sake of time 
savings, but require intensified control and critical re-
evaluation of their outputs, which partially neutralizes the 
expected productivity gains and further overloads the Code 
Review stage.

The aim of the study is to identify and substantiate 
organizational-managerial and technological solutions that 
ensure an increase in the effectiveness of organizational 
management on the basis of the introduction and 
development of digital technologies.

The scientific novelty of the study lies in the development 

of an integrated model of the digital transformation of an 
organization’s management system, which includes:

– a refinement of the conceptual apparatus of digital 
transformation of management and digital maturity of an 
organization;

– a justification of the criteria and indicators for evaluating 
the effectiveness of managerial decisions in the context of 
digitalization;

The author’s hypothesis is based on the assumption 
that the implementation of an integrated model of digital 
transformation of an organization’s management system, 
grounded in the reengineering of key business processes and 
the use of data analytics, leads to a statistically significant 
increase in the effectiveness of managerial decisions and 
an improvement in the main socio-economic performance 
indicators of the organization.

Materials and Methods
In preparing the study, the method of systematic literature 
review was used, supplemented by a meta-analysis of 
industrial data. Such a combined design made it possible to 
combine academic evidentiality with large-scale industrial 
empirics. The chronological frame of the study covers the 
period from 2023 to the first quarter of 2025, which ensures 
a focus on contemporary state-of-the-art models, including 
GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro, and DeepSeek-
V3, and makes it possible to evaluate them under conditions 
of current practical use.

The empirical base was formed from three complementary 
classes of sources, providing a balance between scientific 
rigor and practical relevance. First, academic publications 
(IEEE/ACM/arXiv) were used: peer-reviewed articles 
and preprints were analyzed that examine the empirical 
properties of LLMs in tasks of code generation and code 
review. Special emphasis was placed on works studying 
interactive workflows (for example TICODER), comparative 
studies of code quality in Human vs LLM settings, as well as 
psychological and cognitive aspects of developer interaction 
with AI. Recourse to journals such as IEEE Transactions on 
Software Engineering and to materials of leading conferences 
such as ICSE and FSE serves as a guarantee of the validity and 
representativeness of the results used. Second, industrial 
analytics and reports were used: data from global surveys 
and telemetry from technology companies and consulting 
agencies were analyzed, including DORA 2024 (Google 
Cloud) reports, GitHub Octoverse 2024, the McKinsey study 
The State of AI, as well as security reports from CrowdStrike 
and Apiiro. These materials provide a macro-level view 
of the role of AI in production processes and reflect the 
behavior of systems in the wild (in-the-wild). Third, technical 
benchmarks and leaderboards were used: for an objective 
assessment of model accuracy, results from the Hallucination 
Leaderboard were analyzed, as well as performance on the 
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HumanEval and MBPP datasets and on the specialized SWR-
Bench (Software Review Benchmark).

Results and Discussion
One of the central research questions is the analysis of the 
extent to which LLMs are able to compete with classical static 
analysis tools (SAST) in solving code review tasks. Traditional 
static analysis based on strictly predefined rules (SAST) is 
characterized by complete determinism of results, but at the 
same time demonstrates limited sensitivity to the broader 
system context and interrelations between components. In 
contrast, LLMs possess a pronounced ability for semantic 
interpretation of program code, yet are inevitably associated 
with the risks of hallucination generation and the stochastic 
nature of outputs.

An empirical study based on the Quarkus (Java) project 
revealed substantial discrepancies in code quality 
assessments produced by SonarQube and by models of the 
GPT family. In particular, SonarQube classified 95,49% of 
classes into the category with a maintainability rating A (the 
maximum level), whereas the GPT-4o model systematically 
exhibited optimistic bias, assigning high scores to code 
fragments in which latent structural defects persisted. At the 
same time, more recent data on GPT-4.0 show a noticeable 
increase in model precision (Precision = 0.79) compared to 
the open model DeepSeek-V3 (Precision = 0.42) in detecting 
specific code smells such as Change Preventers. Table 1 
presents a comparative analysis of the effectiveness of 
different approaches to code review.

Table 1. Comparative characteristics of the effectiveness of code review methods (compiled by the author based on [7; 15-
18]).

Characteristic / 
Tool

SonarQube (Static 
Analysis)

GPT-3.5 Turbo / Llama 3 GPT-4o / Claude 3.5 
Sonnet

Agent-based systems 
(Graphite, CodeRabbit)

Methodology Deterministic rules, 
AST parsing

Probabilistic generation, 
limited context

Multimodal analysis, 
deep semantics

RAG, multi-step reasoning, 
integration with Git

Level of analysis Syntax, style, known 
vulnerabilities

Code snippets, local logic Classes, modules, cross-
file dependencies

Context of the entire PR, 
commit history

False positive rate 
(False Positives)

Low (< 1.1% in 
an enterprise 
environment)

High (tendency to 
hallucinations)

Medium/Low (with 
appropriate prompting)

Optimized (5–15%)

Detection of logical 
errors

Practically absent Limited by context window High (understanding of 
business logic)

High (alignment with 
requirements)

Detection of complex 
vulnerabilities

Limited by 
signature database

Medium (skipping 
architectural issues)

High (data flow 
analysis)

Very high (semantic 
security analysis)

Impact on review 
speed

Instant feedback Requires time for 
generation and verification

Depends on API latency Asynchronous review, 
saving human effort

From the data presented in Table 1, it follows that agent 
architectures deployed on top of high-performance LLMs 
effectively attempt to synthesize the strengths of classical 
static analyzers and generative models. As a result, they 
succeed in reducing the share of false positives to a range of 
about 5–15%, which can already be considered a practically 
acceptable level for operation in industrial environments 
and for use as full-fledged engineering assistants.

Although an intuitive belief has taken root in the professional 
community that AI tools unambiguously accelerate 
development, the accumulated empirical data indicate a 
substantially more complex, nonlinear picture. According 
to the DORA 2024 report, an increase in the degree of AI 
adoption in an organization is statistically associated with 
a reduction in team throughput. This seemingly paradoxical 
dynamic is conveniently interpreted through the concept of 
bottleneck shift: the limiting resource is no longer artifact 
generation, but the subsequent stages of the lifecycle [7, 8].

When developers begin actively using Copilot-class tools, 

the rate of code production rises sharply. Telemetry data 
record a 98% increase in the number of Pull Requests, while 
the average time to review them increases by 91%.8 Human 
cognitive capacities involved in analyzing, reviewing, and 
reconciling changes do not scale as easily as computational 
resources for generation. As a result, teams become 
overloaded with a rapidly growing volume of code that must 
be inspected, understood, and safely integrated.

Additionally, a GitClear study covering 150 million lines of 
code recorded an alarming shift: an increase in the Code 
Churn metric and a simultaneous decline in code reuse 
metrics (Code Reuse) [3]. In other words, AI tools push 
developers toward continual generation of new fragments 
instead of systematic refactoring and consolidation of the 
existing codebase. This leads to violation of the DRY (Dont 
Repeat Yourself) principle, fragmentation of logic, and an 
overall increase in the entropy of the software system.

Below, Figure 1 presents the dynamics of software delivery 
metrics as a function of the level of AI adoption.
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Fig. 1. Dynamics of software delivery indicators depending 
on the level of AI implementation (compiled by the author 

based on [3, 18]).

Automation of code review processes using AI gives rise to a 
new class of risks related both to the quality of the generated 
artifacts and to the security of the models themselves. The 
2025 Apiiro report records an explosive growth in the number 
of vulnerabilities in code created with AI involvement: 
over a six-month period, the volume of new security issues 
increased by a factor of 10. The use of AI radically transforms 
the structure of typical software defects. Whereas humans 
are predominantly prone to syntactic errors, typos, and local 
logical mistakes, AI models as a rule generate code that is 
formally impeccable from the standpoint of syntax, yet 
may contain deep architectural vulnerabilities. Empirical 
studies show a reduction in the share of syntactic errors by 
approximately 76%, but at the same time record an increase 
in the number of architectural defects and potential privilege 
escalation points by 322%. Thus, the error shifts from the 
level of visible syntactic flaws to the level of system design 

and threat models, where it is much more difficult to detect 
using standard linters and tests [9, 10].

LLM hallucinations, that is, the confident generation of 
factually incorrect or nonexistent information, remain 
a fundamental problem. In the context of Code Review, 
this manifests itself, in particular, in recommendations 
to use methods or packages that do not exist in the target 
ecosystem. Such suggestions create a new attack vector: an 
attacker can anticipate the development of the situation and 
register a package with the name invented by the model, 
thereby implementing a classical Typosquatting scheme in 
a disguised form. According to Hallucination Leaderboard 
data (November 2025), the hallucination rate for leading 
models is estimated as follows: GPT-4.1 — 5.6%; DeepSeek-
V3 — 5.3–5.5%; Claude 3.5 Sonnet — on the order of 3–4% 
(estimate based on similar architectures); Google Gemini-
2.5-flash-lite — 3.3%.21 Even an apparently low rate on 
the order of 3% represents an unacceptable risk for safety-
critical systems in the absence of strict human oversight and 
formalized verification procedures.

A separate, less intuitive vulnerability channel was identified 
in a CrowdStrike study: the influence of politically charged 
context on the quality and security of generated code. In 
experiments with the DeepSeek-R1 model, it was shown that 
including topics that are politically sensitive for the model 
developers (for example, mention of Tibet) in the prompt 
increases the probability of generating vulnerable code by 
almost 50%, from 19% to 27.2%. This effect demonstrates 
the fragility of safety alignment mechanisms: the behavior of 
the model can be significantly shifted through manipulation 
of the request context, which opens the possibility of 
purposefully bypassing safety constraints without directly 
modifying the model parameters.

Below, Table 2 presents a comparative analysis of types of 
errors made by humans and by AI.

Table 2. Comparative analysis of types of errors made by humans and AI (compiled by the author based on  [3, 18]).

Error Type Human-Written Code 
(Relative Level)

AI-Generated / Verified 
Code (Relative Level)

Change vs. 
Human

Interpretation

Syntactic Errors High Very Low –76% AI tools drastically reduce basic 
syntax mistakes.

Logical Errors Medium Medium –60% Logic bugs decrease but still remain a 
noticeable portion of defects.

Architectural 
Vulnerabilities

Low Very High +153% AI shifts errors toward deeper, 
harder-to-detect design and security 
issues.

Secrets Leakage / 
Misconfiguration

Medium High Increase (no 
exact % given)

AI code more often contains exposed 
secrets or risky configuration 
patterns.

One of the most paradoxical findings of the studies conducted 
in 2024–2025 was the discovery of a specific effect of AI 
tools on the work of highly qualified engineers. The METR 

experiment demonstrated that, when solving realistic 
applied tasks with the support of advanced programming 
assistants (Cursor Pro, Claude 3.5), experienced open-
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source developers on average performed their work 19% 
more slowly compared to the control group working without 
AI involvement [14].

The key mechanism behind this slowdown is associated 
with a sharp increase in cognitive load arising during the 
verification of generated code. In essence, the developer 
finds themself in the position of a reviewer: they have 
to parse and interpret someone else’s code (and code 
produced by an AI is functionally equivalent to code written 
by another person), which on average requires more effort 
than constructing one’s own solution. Constant context 
switching between the original task, model suggestions, and 
the final implementation, as well as the need for continuous 
factual checking and detection of subtle defects, lead to the 
accumulation of mental fatigue and a decrease in work pace. 
At the same time, the subjective picture is radically distorted: 
participants felt that the use of AI had accelerated them 
by approximately 20%, whereas objective measurements 
showed a statistically significant slowdown.

On the other hand, the results of the TICODER study indicate 
that a well-designed organization of the workflow can 
substantially reduce the cognitive load on developers. In 
particular, the use of an interactive test generation approach 
redirects engineers’ attention away from direct analysis of 

the source code toward the evaluation of the observable 
behavior of the software artifact through a test system, 
which, in turn, leads to a significant increase in the Pass@1 
Accuracy metric—on average by 45.97% over five iterations 
[12].

To overcome the fundamental limitations of single LLM 
instances, the industry is gradually shifting toward multi-
agent architectures. The SWR-Bench (Software Review 
Benchmark), which includes a corpus of 1,000 manually 
verified pull requests, shows that modern single models 
are insufficiently effective for full-fledged code review, 
systematically losing important design and architectural 
context. At the same time, applying a strategy of aggregating 
multiple reviews makes it possible to compensate for this 
drawback, providing an increase in F1-score of 43.67%. 
Systems such as Graphite Agent and CodeRabbit implement 
precisely this approach: they take over the stage of preliminary 
analysis of changes, their condensed summarization, and the 
filtering out of trivial or low-significance comments, leaving 
to the human expert only the consideration of high-level 
architectural decisions.

Table 3 below will present the impact of the introduction of 
AI agents on Code Review metrics.

Table 3. Impact of the introduction of AI agents on Code Review metrics (compiled by the author based on [12, 14]).

Metric Value / Change Interpretation
Share of human replies to the 
agent’s comments

56% High engagement; developers read and respond

Share of code changes following 
the agent’s review

18% Only every fifth remark results in an actual modification

Developer sentiment (positive) 36% A significant proportion perceives benefits
Developer sentiment (negative) 8% Low level of rejection; the majority are neutral (56%)
Impact on PR closure time Increase (in the short term) Bottleneck effect due to the increased volume of reviews
Documentation quality Increase of ~7.5% Agents effectively enforce commenting on and describing PRs

Taken together, the results presented demonstrate that 
LLMs and multi-agent systems built on top of them are 
already capable of complementing, but not replacing, 
classical SAST tools in code review tasks, while altering both 
the distribution of defects and the organizational dynamics 
of development. On the one hand, modern models (of the 
GPT-4 class) and agentic solutions (Graphite, CodeRabbit) 
exhibit high semantic sensitivity, reliably identify complex 
logical and architectural vulnerabilities, reduce the share 
of false positives to an industrially acceptable 5–15%, 
and significantly outperform both rule-based analyzers 
in understanding business logic and open models in the 
accuracy of detecting specific code smells. On the other 
hand, large-scale adoption of AI tools leads to a shift of 
the bottleneck from artifact generation to the review and 
integration stages: an increase is observed in the number of 
PRs, the time required to process them, code churn, and a 
decrease in code reuse, which undermines the DRY principle 

and degrades software delivery stability metrics. At the same 
time, AI radically transforms the error profile—from syntactic 
issues to deep architectural and configuration vulnerabilities 
exacerbated by hallucinations and context-induced failures 
of safety alignment mechanisms, thereby creating new attack 
vectors (hallucinated packages, politically charged prompts) 
[11, 13]. Finally, the impact of AI on the productivity of 
skilled engineers turns out to be ambivalent: the direct 
use of assistants without revisiting the process increases 
cognitive load and may slow down work, whereas process 
and methodological adaptations (for example, interactive 
test generation and multi-agent aggregation of reviews) 
make it possible to partially compensate for these effects 
by shifting expert attention from manual code analysis to 
the verification of behavior and high-level architectural 
decisions. Consequently, AI-based code review tools should 
be regarded not as an autonomous replacement for human 
expertise and static analysis, but as a layer of intelligent 
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automation whose effectiveness and safety directly depend 
on the quality of their integration into engineering practices 
and systemic verification mechanisms.

Conclusion
The analysis carried out allows us to conclude that in 
2024–2025 AI-based Code Review automation has moved 
beyond experimental deployments and entered a phase of 
critical rethinking and purposeful structural integration into 
engineering processes. The technology has demonstrated the 
ability to profoundly transform the software development 
landscape; however, the shift accompanying this 
transformation has exposed a number of serious systemic 
challenges.

First, the phenomenon of the productivity paradox has been 
empirically confirmed: unrestricted and weakly regulated 
use of code generators leads to overload of verification 
loops, reduces the actual throughput of teams, and increases 
the time to recover from failures and regression incidents. AI 
serves as an effective acceleration tool for junior engineers, 
raising their productivity and the quality of their solutions to 
the level of a notional average specialist, but at the same time 
it can turn into an inertial factor for experts, especially when 
solving atypical, weakly formalizable tasks.

Second, the qualitative profile of the software being created 
is itself changing. The decrease in the number of trivial, 
syntactic, and mechanical errors is accompanied by a relative 
increase in the share of complex semantic, architectural, and 
system-integration defects, as well as the emergence of new 
classes of security risks caused by model hallucinations and 
vulnerability to adversarial influences on them.

Third, the trajectory of further automation development 
is associated not with the complete displacement of 
humans from the loop, but with the formation of hybrid 
agentic ecosystems. Such systems should internalize 
routine operations — verification and coordination of 
documentation, generation and updating of tests, initial 
analysis of vulnerabilities and compliance with security 
policies — while leaving engineers the functions of decision-
making in the areas of architecture, design trade-offs, and 
business logic. A key condition for sustainable adoption is the 
transition from the Human-in-the-Loop paradigm to Human-
on-the-Loop . This, in turn, implies an increase in trust in the 
tools by reducing the level of false positives and increasing 
the transparency of algorithmic decisions, including the 
possibility of their interpretation and audit.
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