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In contemporary software engineering, expert code review practices have entered a phase of profound reconsideration
under the influence of generative artificial intelligence technologies. In 2024-2025, a qualitatively new, exponential stage of
integrating large language models (LLM) into the software development life cycle (SDLC) is being observed, which radically
changes the balance between development speed, quality assurance, and the security of software systems. The aim of the
study is to provide a comprehensive assessment of the effectiveness of using Al to automate Code Review processes, to
analyze how such technological interventions modify software quality metrics, and to identify latent risks conditioned by
the human factor. The focal point is the phenomenon of the productivity paradox: the acceleration of code writing with Al
assistants leads to the review and deployment stages becoming the bottleneck, where the throughput of the team in fact
decreases. Based on quantitative indicators, it is demonstrated that the introduction of Al correlates with a 7,2% decrease
in delivery stability and an increase in architectural technical debt, while developers themselves subjectively interpret
what is happening as an increase in their own productivity. Particular emphasis is placed on a comparative analysis of
traditional static application security testing (SAST) tools and LLM agents, on identifying specific vulnerabilities induced by
neural network models (including the impact of politically charged triggers on code security), as well as on examining the
cognitive effects of Al use for experienced software engineers. It is shown that experts may lose up to 19% of their working
time when involving Al in solving complex tasks due to the need for additional verification and correction of contextual
model hallucinations. The article proposes a scientifically grounded typology of errors generated by Al and formulates
recommendations for transitioning to agentic workflows in which Al functions not only as a generator of code fragments,
but also as an interactive verifier of developer intentions, operating in a mode of close human-machine synergy.

Keywords: Digital Transformation, Organizational Management, Information Technologies, Management Efficiency,
Digital Platforms, Business Processes, Data Analysis, Innovative Development.

INTRODUCTION generating within seconds thousands of lines of syntactically
correct program constructs, the limiting factor becomes the

human ability to read, make sense of, and verify this code

[1].

Historically, code review has been one of the most resource-
intensive and at the same time key stages of the software
development life cycle. Classical approaches, stemming

from formalized procedures of manual code inspection
and asynchronous reviews via pull requests (PR), in fact
performed the role of the primary filter preventing defects
from reaching the production environment. The emergence
and mass adoption of generative Al tools — GitHub Copilot,
Amazon Q, as well as a wide range of Transformer-based
models (GPT-4, Claude 3.5, DeepSeek) — have radically
changed the economics of code production. If for decades
the bottleneck of the SDLC remained the direct act of writing
code, then by 2024, under conditions in which Al is capable of

As a result, a shift of the basic paradigm is observed: the
emphasis moves from the actual acts of coding to reviewing,
meaningful integration, and orchestration of artifacts created
both by developers and by models. This leads to a sharp
increase in the workload on senior developers and team
leads, who have to process a significantly increased flow of
changes. Empirical data show that the share of rewritten or
deleted code reaches historical maxima, which is interpreted
as an indicator of declining quality of the initial generation
and the need for multiple iterations of corrections [3]. In this

Citation: Evgenii Lvov, “Al-Driven Automation of Code Review Processes: Enhancing Software Quality and Reducing
Human Error”, Universal Library of Innovative Research and Studies, 2025; 2(2): 39-45. DOI: https://doi.org/10.70315/

uloap.ulirs.2025.0202006.

www.ulopenaccess.com

Page | 39



Al-Driven Automation of Code Review Processes: Enhancing Software Quality and Reducing

Human Error

configuration, the automation of Code Review ceases to be
an optional process improvement and turns into a structural
condition for maintaining the operability and resilience of
engineering teams.

The relevance of the problem under consideration is
determined both by the technological maturity of generative
models and by the depth of their penetration into industrial
development processes. According to the Stack Overflow
Developer Survey 2024, which covered more than 45 000
respondents, the attitude of professional developers toward
Al tools remains predominantly positive: 72% of respondents
evaluate their use favorably [2]. At the same time, the
dynamics of sentiment indicate a phase transition from
enthusiastic acceptance to cautious pragmatism: data for
2025 record a decrease in the share of positive assessments
from 70% to 60%, which reflects the accumulated
experience of encountering the real limitations and costs of
the technology [5].

The key statistical indicators describing the landscape of
2024 demonstrate a high level of penetration of Al tools. More
than 97% of developers in the USA, Brazil, Germany, and India
report using them in their everyday work. At the same time,
a pronounced geographical asymmetry of corporate support
is observed: in the USA 88% of companies encourage the use
of Al, whereas in Germany the corresponding figure is only
59%, which, with a high degree of probability, is associated
with strict regimes for the regulation of privacy and data
protection [6]. At the level of subjective assessments, 82,7%
of developers are convinced that Al increases their individual
productivity, and 60,8% note an acceleration of the process
oflearning and mastering new technologies [4]. However, the
objective DORA (DevOps Research and Assessment) metrics
indicate a more complex picture: a 25-percent increase in
the scale of Al adoption correlates with a 1,5% decrease in
delivery throughput and a 7,2% decline in delivery stability.7
In other words, the subjective feeling of acceleration does not
automatically convert into an improvement of aggregated
organizational indicators.

Against this background, a specific crisis of trust is emerging.
With a high level of Al usage, 67,8% of developers at the
same time report distrust of its results, pointing to the lack
of context of the code base as the key factor [4]. A cognitive
dissonance arises: the tools are used for the sake of time
savings, but require intensified control and critical re-
evaluation of their outputs, which partially neutralizes the
expected productivity gains and further overloads the Code
Review stage.

The aim of the study is to identify and substantiate
organizational-managerial and technological solutions that
ensure an increase in the effectiveness of organizational
management on the basis of the introduction and
development of digital technologies.

The scientific novelty of the study lies in the development

of an integrated model of the digital transformation of an
organization’s management system, which includes:

- a refinement of the conceptual apparatus of digital
transformation of management and digital maturity of an
organization;

- a justification of the criteria and indicators for evaluating
the effectiveness of managerial decisions in the context of
digitalization;

The author’s hypothesis is based on the assumption
that the implementation of an integrated model of digital
transformation of an organization’s management system,
grounded in the reengineering of key business processes and
the use of data analytics, leads to a statistically significant
increase in the effectiveness of managerial decisions and
an improvement in the main socio-economic performance
indicators of the organization.

MATERIALS AND METHODS

In preparing the study, the method of systematic literature
review was used, supplemented by a meta-analysis of
industrial data. Such a combined design made it possible to
combine academic evidentiality with large-scale industrial
empirics. The chronological frame of the study covers the
period from 2023 to the first quarter of 2025, which ensures
a focus on contemporary state-of-the-art models, including
GPT-40, Claude 3.5 Sonnet, Gemini 1.5 Pro, and DeepSeek-
V3, and makes it possible to evaluate them under conditions
of current practical use.

The empirical base was formed from three complementary
classes of sources, providing a balance between scientific
rigor and practical relevance. First, academic publications
(IEEE/ACM/arXiv) were used: peer-reviewed articles
and preprints were analyzed that examine the empirical
properties of LLMs in tasks of code generation and code
review. Special emphasis was placed on works studying
interactive workflows (for example TICODER), comparative
studies of code quality in Human vs LLM settings, as well as
psychological and cognitive aspects of developer interaction
with Al Recourse to journals such as IEEE Transactions on
Software Engineering and to materials of leading conferences
such as ICSE and FSE serves as a guarantee of the validity and
representativeness of the results used. Second, industrial
analytics and reports were used: data from global surveys
and telemetry from technology companies and consulting
agencies were analyzed, including DORA 2024 (Google
Cloud) reports, GitHub Octoverse 2024, the McKinsey study
The State of Al, as well as security reports from CrowdStrike
and Apiiro. These materials provide a macro-level view
of the role of Al in production processes and reflect the
behavior of systems in the wild (in-the-wild). Third, technical
benchmarks and leaderboards were used: for an objective
assessment of model accuracy, results from the Hallucination
Leaderboard were analyzed, as well as performance on the
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HumanEval and MBPP datasets and on the specialized SWR-
Bench (Software Review Benchmark).

RESULTS AND DISCUSSION

One of the central research questions is the analysis of the
extent to which LLMs are able to compete with classical static
analysis tools (SAST) in solving code review tasks. Traditional
static analysis based on strictly predefined rules (SAST) is
characterized by complete determinism of results, but at the
same time demonstrates limited sensitivity to the broader
system context and interrelations between components. In
contrast, LLMs possess a pronounced ability for semantic
interpretation of program code, yet are inevitably associated
with the risks of hallucination generation and the stochastic
nature of outputs.

An empirical study based on the Quarkus (Java) project

revealed substantial discrepancies in code quality
assessments produced by SonarQube and by models of the
GPT family. In particular, SonarQube classified 95,49% of
classes into the category with a maintainability rating A (the
maximum level), whereas the GPT-40 model systematically
exhibited optimistic bias, assigning high scores to code
fragments in which latent structural defects persisted. At the
same time, more recent data on GPT-4.0 show a noticeable
increase in model precision (Precision = 0.79) compared to
the open model DeepSeek-V3 (Precision = 0.42) in detecting
specific code smells such as Change Preventers. Table 1
presents a comparative analysis of the effectiveness of

different approaches to code review.

Table 1. Comparative characteristics of the effectiveness of code review methods (compiled by the author based on [7; 15-

18]).

Tool Analysis)

Characteristic /|SonarQube (Static| GPT-3.5 Turbo / Llama 3

GPT-40 / Claude 3.5|Agent-based systems
Sonnet (Graphite, CodeRabbit)

Deterministicrules, | Probabilistic
AST parsing limited context

Methodology

generation, | Multimodal

analysis, | RAG, multi-step reasoning,

deep semantics integration with Git

Level of analysis
vulnerabilities

Syntax,style,known | Code snippets, local logic

Classes, modules, cross-|Context of the entire PR,
file dependencies commit history

False positive rate|Low (< 1.1% in|High

(tendency to|Medium/Low

(with |Optimized (5-15%)

(False Positives) an enterprise | hallucinations) appropriate prompting)

environment)
Detection of logical |Practically absent |Limited by context window|High (understanding of|High (alignment with
errors business logic) requirements)
Detection of complex|Limited by |Medium (skipping|High (data flow|Very  high (semantic
vulnerabilities signature database |architectural issues) analysis) security analysis)
Impact on review|Instant feedback |Requires time for|Depends on API latency | Asynchronous review,
speed generation and verification saving human effort

From the data presented in Table 1, it follows that agent
architectures deployed on top of high-performance LLMs
effectively attempt to synthesize the strengths of classical
static analyzers and generative models. As a result, they
succeed in reducing the share of false positives to a range of
about 5-15%, which can already be considered a practically
acceptable level for operation in industrial environments
and for use as full-fledged engineering assistants.

Although an intuitive belief has taken root in the professional
community that Al tools unambiguously accelerate
development, the accumulated empirical data indicate a
substantially more complex, nonlinear picture. According
to the DORA 2024 report, an increase in the degree of Al
adoption in an organization is statistically associated with
a reduction in team throughput. This seemingly paradoxical
dynamic is conveniently interpreted through the concept of
bottleneck shift: the limiting resource is no longer artifact
generation, but the subsequent stages of the lifecycle [7, 8].

When developers begin actively using Copilot-class tools,

the rate of code production rises sharply. Telemetry data
record a 98% increase in the number of Pull Requests, while
the average time to review them increases by 91%.8 Human
cognitive capacities involved in analyzing, reviewing, and
reconciling changes do not scale as easily as computational
resources for generation. As a result, teams become
overloaded with a rapidly growing volume of code that must
be inspected, understood, and safely integrated.

Additionally, a GitClear study covering 150 million lines of
code recorded an alarming shift: an increase in the Code
Churn metric and a simultaneous decline in code reuse
metrics (Code Reuse) [3]. In other words, Al tools push
developers toward continual generation of new fragments
instead of systematic refactoring and consolidation of the
existing codebase. This leads to violation of the DRY (Dont
Repeat Yourself) principle, fragmentation of logic, and an
overall increase in the entropy of the software system.

Below, Figure 1 presents the dynamics of software delivery
metrics as a function of the level of Al adoption.

Universal Library of Innovative Research and Studies

Page | 41



Al-Driven Automation of Code Review Processes: Enhancing Software Quality and Reducing

Human Error

High 4 Increased Variability and
Process Instability
° L ® ¢
0n ~1EO O v @ ¢
g Throughput Trend (~ 1.5%) " ¢ o0 5% w
] L °
> ]
a L]
4 . 2]
< = Se P
& | Stability Trend (~7.2%) - 0e%00g o3
la) o 0 ° . 0
0 .%%0%,
@ Throughput . .,
Stabilt ¢ gt
Low § Smbilky L R
Low High
Al Adoption Score
® Throughput @ Stability

Fig. 1. Dynamics of software delivery indicators depending
on the level of Al implementation (compiled by the author
based on [3, 18]).

Automation of code review processes using Al gives rise to a
new class of risks related both to the quality of the generated
artifacts and to the security of the models themselves. The
2025 Apiiro report records an explosive growth in the number
of vulnerabilities in code created with Al involvement:
over a six-month period, the volume of new security issues
increased by a factor of 10. The use of Al radically transforms
the structure of typical software defects. Whereas humans
are predominantly prone to syntactic errors, typos, and local
logical mistakes, Al models as a rule generate code that is
formally impeccable from the standpoint of syntax, yet
may contain deep architectural vulnerabilities. Empirical
studies show a reduction in the share of syntactic errors by
approximately 76%, but at the same time record an increase
in the number of architectural defects and potential privilege
escalation points by 322%. Thus, the error shifts from the
level of visible syntactic flaws to the level of system design

and threat models, where it is much more difficult to detect
using standard linters and tests [9, 10].

LLM hallucinations, that is, the confident generation of
factually incorrect or nonexistent information, remain
a fundamental problem. In the context of Code Review,
this manifests itself, in particular, in recommendations
to use methods or packages that do not exist in the target
ecosystem. Such suggestions create a new attack vector: an
attacker can anticipate the development of the situation and
register a package with the name invented by the model,
thereby implementing a classical Typosquatting scheme in
a disguised form. According to Hallucination Leaderboard
data (November 2025), the hallucination rate for leading
models is estimated as follows: GPT-4.1 — 5.6%; DeepSeek-
V3 — 5.3-5.5%; Claude 3.5 Sonnet — on the order of 3-4%
(estimate based on similar architectures); Google Gemini-
2.5-flash-lite — 3.3%.21 Even an apparently low rate on
the order of 3% represents an unacceptable risk for safety-
critical systems in the absence of strict human oversight and
formalized verification procedures.

A separate, less intuitive vulnerability channel was identified
in a CrowdStrike study: the influence of politically charged
context on the quality and security of generated code. In
experiments with the DeepSeek-R1 model, it was shown that
including topics that are politically sensitive for the model
developers (for example, mention of Tibet) in the prompt
increases the probability of generating vulnerable code by
almost 50%, from 19% to 27.2%. This effect demonstrates
the fragility of safety alignment mechanisms: the behavior of
the model can be significantly shifted through manipulation
of the request context, which opens the possibility of
purposefully bypassing safety constraints without directly
modifying the model parameters.

Below, Table 2 presents a comparative analysis of types of
errors made by humans and by Al

Table 2. Comparative analysis of types of errors made by humans and Al (compiled by the author based on [3, 18]).

Error Type Human-Written Code |Al-Generated / Verified |Change vs. Interpretation
(Relative Level) Code (Relative Level) |Human

Syntactic Errors |High Very Low -76% Al tools drastically reduce basic
syntax mistakes.

Logical Errors Medium Medium -60% Logic bugs decrease but still remain a
noticeable portion of defects.

Architectural Low Very High +153% Al shifts errors toward deeper,

Vulnerabilities harder-to-detect design and security
issues.

Secrets Leakage /|Medium High Increase (no | Al code more often contains exposed

Misconfiguration exact % given) |[secrets or risky configuration
patterns.

One of the most paradoxical findings of the studies conducted
in 2024-2025 was the discovery of a specific effect of Al
tools on the work of highly qualified engineers. The METR

experiment demonstrated that, when solving realistic
applied tasks with the support of advanced programming
assistants (Cursor Pro, Claude 3.5), experienced open-
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source developers on average performed their work 19%
more slowly compared to the control group working without
Al involvement [14].

The key mechanism behind this slowdown is associated
with a sharp increase in cognitive load arising during the
verification of generated code. In essence, the developer
finds themself in the position of a reviewer: they have
to parse and interpret someone else’s code (and code
produced by an Al is functionally equivalent to code written
by another person), which on average requires more effort
than constructing one’s own solution. Constant context
switching between the original task, model suggestions, and
the final implementation, as well as the need for continuous
factual checking and detection of subtle defects, lead to the
accumulation of mental fatigue and a decrease in work pace.
At the same time, the subjective picture is radically distorted:
participants felt that the use of Al had accelerated them
by approximately 20%, whereas objective measurements
showed a statistically significant slowdown.

On the other hand, the results of the TICODER study indicate
that a well-designed organization of the workflow can
substantially reduce the cognitive load on developers. In
particular, the use of an interactive test generation approach
redirects engineers’ attention away from direct analysis of

the source code toward the evaluation of the observable
behavior of the software artifact through a test system,
which, in turn, leads to a significant increase in the Pass@1
Accuracy metric—on average by 45.97% over five iterations
[12].

To overcome the fundamental limitations of single LLM
instances, the industry is gradually shifting toward multi-
agent architectures. The SWR-Bench (Software Review
Benchmark), which includes a corpus of 1,000 manually
verified pull requests, shows that modern single models
are insufficiently effective for full-fledged code review,
systematically losing important design and architectural
context. At the same time, applying a strategy of aggregating
multiple reviews makes it possible to compensate for this
drawback, providing an increase in Fl-score of 43.67%.
Systems such as Graphite Agent and CodeRabbit implement
precisely this approach: they take over the stage of preliminary
analysis of changes, their condensed summarization, and the
filtering out of trivial or low-significance comments, leaving
to the human expert only the consideration of high-level
architectural decisions.

Table 3 below will present the impact of the introduction of
Al agents on Code Review metrics.

Table 3. Impact of the introduction of Al agents on Code Review metrics (compiled by the author based on [12, 14]).

Metric Value / Change

Interpretation

Share of human replies to the|56%

agent’s comments

High engagement; developers read and respond

Share of code changes following|18% Only every fifth remark results in an actual modification
the agent’s review

Developer sentiment (positive) [36% A significant proportion perceives benefits

Developer sentiment (negative) 8% Low level of rejection; the majority are neutral (56%)

Impact on PR closure time Increase (in the short term)

Bottleneck effect due to the increased volume of reviews

Increase of ~7.5%

Documentation quality

Agents effectively enforce commenting on and describing PRs

Taken together, the results presented demonstrate that
LLMs and multi-agent systems built on top of them are
already capable of complementing, but not replacing,
classical SAST tools in code review tasks, while altering both
the distribution of defects and the organizational dynamics
of development. On the one hand, modern models (of the
GPT-4 class) and agentic solutions (Graphite, CodeRabbit)
exhibit high semantic sensitivity, reliably identify complex
logical and architectural vulnerabilities, reduce the share
of false positives to an industrially acceptable 5-15%,
and significantly outperform both rule-based analyzers
in understanding business logic and open models in the
accuracy of detecting specific code smells. On the other
hand, large-scale adoption of Al tools leads to a shift of
the bottleneck from artifact generation to the review and
integration stages: an increase is observed in the number of
PRs, the time required to process them, code churn, and a
decrease in code reuse, which undermines the DRY principle

and degrades software delivery stability metrics. At the same
time, Al radically transforms the error profile—from syntactic
issues to deep architectural and configuration vulnerabilities
exacerbated by hallucinations and context-induced failures
of safety alignment mechanisms, thereby creating new attack
vectors (hallucinated packages, politically charged prompts)
[11, 13]. Finally, the impact of Al on the productivity of
skilled engineers turns out to be ambivalent: the direct
use of assistants without revisiting the process increases
cognitive load and may slow down work, whereas process
and methodological adaptations (for example, interactive
test generation and multi-agent aggregation of reviews)
make it possible to partially compensate for these effects
by shifting expert attention from manual code analysis to
the verification of behavior and high-level architectural
decisions. Consequently, Al-based code review tools should
be regarded not as an autonomous replacement for human
expertise and static analysis, but as a layer of intelligent
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automation whose effectiveness and safety directly depend
on the quality of their integration into engineering practices
and systemic verification mechanisms.

CONCLUSION

The analysis carried out allows us to conclude that in
2024-2025 Al-based Code Review automation has moved
beyond experimental deployments and entered a phase of
critical rethinking and purposeful structural integration into
engineering processes. The technology has demonstrated the
ability to profoundly transform the software development
landscape; however, the shift accompanying this
transformation has exposed a number of serious systemic
challenges.

First, the phenomenon of the productivity paradox has been
empirically confirmed: unrestricted and weakly regulated
use of code generators leads to overload of verification
loops, reduces the actual throughput of teams, and increases
the time to recover from failures and regression incidents. Al
serves as an effective acceleration tool for junior engineers,
raising their productivity and the quality of their solutions to
the level of a notional average specialist, but at the same time
it can turn into an inertial factor for experts, especially when
solving atypical, weakly formalizable tasks.

Second, the qualitative profile of the software being created
is itself changing. The decrease in the number of trivial,
syntactic, and mechanical errors is accompanied by a relative
increase in the share of complex semantic, architectural, and
system-integration defects, as well as the emergence of new
classes of security risks caused by model hallucinations and
vulnerability to adversarial influences on them.

Third, the trajectory of further automation development
is associated not with the complete displacement of
humans from the loop, but with the formation of hybrid
agentic ecosystems. Such systems should internalize
routine operations — verification and coordination of
documentation, generation and updating of tests, initial
analysis of vulnerabilities and compliance with security
policies — while leaving engineers the functions of decision-
making in the areas of architecture, design trade-offs, and
business logic. A key condition for sustainable adoption is the
transition from the Human-in-the-Loop paradigm to Human-
on-the-Loop . This, in turn, implies an increase in trust in the
tools by reducing the level of false positives and increasing
the transparency of algorithmic decisions, including the
possibility of their interpretation and audit.
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