
Page | 23www.ulopenaccess.com

ISSN: 3065-0003 | Volume 2, Issue 1

Open Access | PP: 23-27

DOI: https://doi.org/10.70315/uloap.ulirs.2025.0201006

Universal Library of Innovative Research and Studies Research Article

Peculiarities of Building a Secure Application Architecture in JavaScript
Volodymyr Lopukhovych
Senior Software Engineer, Disney Streaming (Contractor), Cary, North Carolina, USA.
ORCID: 0009-0002-3508-4972

This paper addresses the critical need for designing secure JavaScript applications by presenting both a foundational
architectural overview and practical guidelines for implementation. The first part contrasts classical multi-page approaches
with Single Page Application (SPA) paradigms, emphasizing the unique security challenges SPA-based systems face when
handling user input and persistent session data. It then examines how microservices and containerization can strengthen
reliability and fault isolation, provided that service-to-service communication is rigorously authenticated and monitored.
The second part shifts focus toward a holistic development lifecycle, grounded in DevSecOps principles, with comprehensive
use of automated testing, static analysis, and secure storage of credentials. Illustrated code snippets exemplify real-world
defensive measures, including environment-based secret management and HTTP security headers. Collectively, this study
underscores the importance of layered safeguards that extend from front-end frameworks to server-side architectures, thus
enabling robust and maintainable JavaScript solutions.

Keywords: JavaScript Security, Single Page Application (SPA), Microservices, DevSecOps, Secure Coding, CSP, Containerization,
Authentication, Access Control.

Abstract

Citation: Volodymyr Lopukhovych, “Peculiarities of Building a Secure Application Architecture in JavaScript”, Universal
Library of Innovative Research and Studies, 2025; 2(1): 23-27. DOI: https://doi.org/10.70315/uloap.ulirs.2025.0201006.

IntroductIon

Over the last decade, JavaScript has evolved into a de facto
standard for both client-facing and server-side development,
notably owing to its broad ecosystem of frameworks, modular
architectures, and active community [1]. The advantages that
JavaScript brings—such as rapid prototyping, compatibility
with multiple platforms, and familiarity for developers—
have also introduced a host of security considerations [2]. In
Single Page Applications (SPAs), where extensive logic resides
on the client side, the need for thorough input validation
and data-flow oversight is amplified [3]. Simultaneously, the
rise of microservice-oriented JavaScript back ends calls for
strategic approaches to authenticating interservice requests
and shielding sensitive APIs [4].

Modern JavaScript-based web services often rely on
numerous external libraries, any of which could harbor
vulnerabilities that compromise the entire system [2].
Although many frameworks, such as Node.js or React, offer
robust tooling, the intrinsic flexibility of JavaScript can lead to
overlooked threats such as cross-site request forgery (CSRF),
cross-site scripting (XSS), and injection flaws [4]. The use of a
microarchitectural style—where components are physically
separated or sandboxed—introduces further complexities,
such as securely passing tokens or handling partial failures

among distributed services [3]. These conditions underscore
the urgency of devising design-level measures that ensure
robust protection in JavaScript-centric environments.

This study pursues two main objectives. First, it seeks to
identify which architectural and developmental factors
are most critical for securing JavaScript applications,
including measures for server-side isolation, secure session
management, and safe utilization of user-supplied data.
Second, it aims to propose a series of best practices—rooted
in microarchitecture, code review processes, and continuous
monitoring—that can be used to systematically mitigate
vulnerabilities [1]. In so doing, it addresses the fundamental
question of how best to integrate security controls (such as
specialized plugin architectures and automated scanning)
into the broader development lifecycle.

To achieve these aims, the article is organized into two main
sections plus a conclusion:

Section one examines foundational architectures for 1.
JavaScript security. It covers the interplay between SPA
design and microservices, highlighting known pitfalls
and enumerating typical threat models.

Section two focuses on practical protective measures, 2.
including the adoption of node-level access controls,
safe configuration defaults, and recommended patterns
for bridging front-end and back-end security concerns.

Page | 24Universal Library of Innovative Research and Studies

Peculiarities of Building a Secure Application Architecture in JavaScript

Architectural Foundations and Security Models in
JavaScript Applications

In classical web development, static websites consist
primarily of prebuilt HTML files served from a static hosting
environment, with little to no dynamic content or real-time
data exchange [5]. By contrast, multi-page applications
(MPAs) dynamically render each page on the server side and
deliver a fresh HTML document upon each navigation event,
thus providing a richer user experience than static sites but
still often reloading much of the interface for minor state
changes [6]. Single Page Applications (SPAs), on the other
hand, optimize the loading process by fetching all necessary
resources up front or on demand, updating the interface
without a full page refresh. This SPA paradigm, particularly
emphasized in the context of secure web services [3], reduces
latency for end users but raises security considerations such
as safe handling of client-side logic and robust cross-origin
communication.

From a security standpoint, SPAs introduce several
opportunities and risks. On the positive side, their
asynchronous data-fetching patterns limit excessive round-
trip overhead, enabling real-time validation and modular
separation of concerns [7]. However, extensive reliance on
JavaScript for routing, templating, and state management
amplifies the impact of vulnerabilities like cross-site
scripting [8] and token theft via insecure storage [4]. Client-
side code must implement thorough checks for untrusted
input and carefully manage security tokens to prevent
session hijacks [9]. Meanwhile, the server component—even
if lightweight—plays an indispensable role by enforcing
authentication, rate-limiting, and fine-grained authorization

rules [10]. For instance, whether one uses Node.js or another
platform, adopting a layered access control system promotes
defense in depth, effectively mitigating injection vectors and
brute-force attempts [11].

Moving toward modern approaches, a microservices-based
architecture further extends the principle of separation into
multiple loosely coupled services that each handle a specific
subset of application functionality [12]. Running these
services in containers, typically orchestrated by platforms
such as Docker or Kubernetes, allows for robust resource
isolation and fault tolerance, ultimately bolstering security
[1, 3]. However, this style of deployment also requires a
coherent gateway or reverse-proxy mechanism to protect
internal APIs and facilitate safe mutual TLS or token-based
authorization for interservice calls [2]. Without these
measures, the benefits of containerization might be undercut
by insecure endpoints or misconfigured routes that expose
sensitive data.

In parallel, continuous integration of client and server
JavaScript frameworks with specialized security add-ons
has become a recommended best practice [13]. For instance,
many frameworks provide out-of-the-box countermeasures
for cross-site request forgery (CSRF) and cross-site scripting
(XSS) by including libraries that sanitize or validate payloads
automatically [14]. Moreover, a disciplined approach that
aligns front-end and back-end protections—verifying tokens
or signatures against short-lived sessions—can defend
against a broader range of attacks [9]. As a result, the secure
integration of JavaScript frameworks encompasses not only
coding patterns but also the deployment ecosystem: from
load balancers to microservices to runtime monitors [15].

Table 1. Web Application Architectures and Their Security Considerations

Architecture type Primary characteristics Key security concerns

Static website Pre-rendered HTML, minimal
server interaction

Risk of defacement attacks, limited dynamic security
checks

Multi-Page Application (MPA) Full server-side rendering,
page refreshes on each route

Traditional injection flaws (SQLi, RCE), session
mismanagement

Single Page Application (SPA) Rich client logic, one-page load
with dynamic updates

Client-side XSS, token theft, CSP configuration, insecure
APIs

Microservices + containerization Decoupled services, container-
based deployment

Insecure service-to-service communication, gateway
misuse, lateral movement inside clusters

The table above offers a summarized view of core web
architectures, highlighting notable security issues for
each. Although static websites involve minimal complexity,
they remain susceptible to simple defacement if hosting
configurations are weak [5]. MPAs, in turn, centralize more
logic on the back end, making server-side injection a priority
concern [16]. SPAs apply advanced JavaScript usage, which
can benefit user experience yet exacerbate client-side
vulnerabilities [8]. Meanwhile, microservices complicate the
network topology, prompting the need for secure interservice
protocols and robust container security policies [2, 12].

By aligning these architectural elements with specialized
JavaScript security plugins, a developer can fortify both user-
facing and internal interactions. Techniques such as policy-
based request filtering, cryptographic tokens, and container
lifecycle management must be orchestrated into a cohesive
security strategy for the entire application. The remainder of
this study expounds on these themes by concentrating on best
practices and real-world implementation considerations that
have direct relevance to maintaining an airtight JS ecosystem,
from the front-end layer to back-end microservices [1, 3, 4].

Page | 25Universal Library of Innovative Research and Studies

Peculiarities of Building a Secure Application Architecture in JavaScript

Practical Aspects of Development and Tooling for
Secure JS Architecture

Ensuring a robust security posture for a JavaScript-based
system involves not only selecting the right architectural
paradigm but also rigorously applying secure coding
and deployment practices throughout the application’s
lifecycle [2]. Modern software processes are increasingly
embracing DevSecOps, where each phase—from design
to maintenance—systematically embeds checks and
protections. Below are several core practices and illustrative
code snippets demonstrating how these can be integrated
into development workflows.

A first step is to incorporate automated testing and static
analysis into the continuous integration (CI) pipeline. Static
analyzers—often accessible through ESLint plugins or
specialized scanners—flag potentially unsafe patterns such
as the use of eval() or direct manipulation of the Function
constructor. For instance, the following ESLint configuration
snippet helps catch risky calls:

{
 “extends”: “eslint:recommended”,
 “rules”: {
 “no-eval”: “error”,
 “no-implied-eval”: “error”,
 “security/detect-object-injection”: “warn”
 },
 “plugins”: [“security”]
}

When combined with a DevSecOps pipeline, each pull request
triggers these static checks automatically. Git repositories
and build servers can be further configured to reject merges
if any critical security violation is detected [1]. Beyond static
analysis, dynamic vulnerability scans—running automatically
in containerized test environments—add another layer of
confidence before changes are deployed.

From an architectural standpoint, various patterns are known
to reduce the risk of vulnerabilities. A common technique is
the enforcement of trust boundaries, or “zones,” that treat
external input sources (for example, HTTP request bodies or
untrusted libraries) with extra scrutiny. The “least privilege”
principle dictates that each service or module should
only have the specific permissions required to perform its
function, thereby containing damage in case of compromise
[3]. Additionally, near real-time monitoring allows
developers to detect anomalies early. Setting up a dedicated
logging and alerting pipeline—often based on solutions like
the ELK stack (Elasticsearch, Logstash, Kibana)—ensures
that security incidents or suspicious usage patterns prompt
immediate investigation.

Another fundamental aspect of secure JavaScript
development is storing secrets and credentials. Rather than
hard-coding these in source files, best practice is to rely
on environment variables or vault-based services [4]. For

instance, Node.js applications might retrieve sensitive tokens
from a secrets manager at runtime, automatically rotating
keys when appropriate. Below is a simplified code snippet
using environment variables for a database password:

const mongoose = require(‘mongoose’);
const dbPassword = process.env.DB_PASSWORD; //
Fetched from vault or .env

mongoose.connect(`mongodb://root:${dbPassword}@12
7.0.0.1:27017/secureDB`,
 { useNewUrlParser: true, useUnifiedTopology: true }
);

To ensure version control policies remain strict, it is wise to
block commits of .env or secrets files by default via .gitignore
rules. Teams can further integrate pre-commit checks (for
example, with Husky or pre-commit hooks) that scan for
suspicious patterns such as private keys.

Beyond internal coding standards, the security of data
in transit is paramount. Configuring HTTPS/TLS not
only protects authentication tokens but also preserves
confidentiality of requests that might contain user
information or API keys [2]. Adding HTTP Strict Transport
Security (HSTS) headers instructs browsers to interact with
the site exclusively over secure connections. Meanwhile,
controlling response headers—X-Frame-Options, X-Content-
Type-Options, and others—thwarts common exploits like
clickjacking or MIME-type spoofing. A minimal code snippet
using the Helmet middleware in Node.js highlights these
practices:

const express = require(‘express’);
const helmet = require(‘helmet’);
const app = express();

// Automatically sets security-related HTTP headers
app.use(helmet());

// Additional HSTS config example:
app.use(
 helmet.hsts({
 maxAge: 31536000,
 includeSubDomains: true
 })
);

Encryption and signature mechanisms play a critical role
when external services or microservices exchange data.
JSON Web Tokens (JWTs) are widely adopted for stateless
session tracking and ensuring authenticity of requests
between microservices, especially under microarchitectural
designs. Combined with OAuth 2.0 flows, they allow secure
delegation of permissions. For confidential flows, ephemeral
or short-lived tokens add further resilience, minimizing
exposure if an access token is compromised [1]. Development
teams employing these standards typically adopt well-tested

Page | 26Universal Library of Innovative Research and Studies

Peculiarities of Building a Secure Application Architecture in JavaScript

libraries—for instance, jsonwebtokens—to streamline
implementation and reduce errors:

const jwt = require(‘jsonwebtoken’);
const payload = { userId: 123, role: ‘admin’ };
const secretKey = process.env.JWT_SECRET;
const token = jwt.sign(payload, secretKey, { expiresIn: ‘1h’ });

At the perimeter, organizations often deploy a Web
Application Firewall (WAF) or implement inline monitors via
Node.js middleware. These monitor HTTP interactions for
suspicious behavior—like malformed requests or suspected
injection attempts—and can reject them preemptively [2].
Content Security Policy (CSP) configurations block or restrict
external script sources, helping mitigate cross-site scripting
vulnerabilities. Meanwhile, for data stored at rest—such
as customer records in MongoDB or MySQL—developers
should enforce encryption layers (for instance, Transparent
Data Encryption) in tandem with frequent backup rotation.
The overarching approach merges layered security from the
OS level, through container isolation, into the application
logic itself.

On the development side, both manual code reviews and
automated tests make up a robust process. Manual reviews
focus on logic-based vulnerabilities, such as insecure
validation or erroneous assumptions about data integrity.
Automated integration tests, in turn, often involve test
frameworks (Jest or Mocha for Node.js) that can incorporate
fuzzing or property-based testing:

describe(‘User Authentication’, () => {
 it(‘should reject invalid credentials’, async () => {
 const response = await request(app)
 .post(‘/login’)
 .send({ username: ‘fakeuser’, password: ‘wrongpw’ });
 expect(response.status).toBe(401);
 });
});

Tests such as the preceding snippet ensure that the server
responds predictably to unauthorized attempts, thereby
verifying both correctness and resilience [3]. Periodic security
audits—together with real-time logs for suspicious activity—
close the loop, revealing whether new vulnerabilities have
crept into the code.

Although no single methodology or tool can guarantee total
immunity, weaving the above techniques into everyday
development fosters continuous improvement in application
security. Leveraging DevSecOps fosters a mindset where
safeguarding user data and service integrity remains integral
to the entire development pipeline, from design sprints
to post-deployment monitoring. As modern JavaScript
applications grow in complexity, these best practices and
the associated code patterns become increasingly vital for
maintaining user trust and organizational reputation.

conclusIon

The analyses and recommendations put forth in this paper
reinforce a central principle: ensuring secure JavaScript
architecture demands a multi-layered approach, from
fundamental design concepts through continuous deployment
and monitoring. Single Page Applications enhance user
experience but heighten exposure to client-side threats,
necessitating careful data validation and secure handling
of tokens. Microservice-based back ends introduce finer-
grained responsibilities, allowing for minimal privileges and
more robust fault tolerance, but also require a well-configured
gateway and encrypted interservice channels. Meanwhile,
adopting DevSecOps practices, such as automated static
checks and dynamic testing in containerized environments,
ensures that each software increment is vetted against
potential vulnerabilities. By harmonizing these practices—
advanced coding guidelines, secret management, TLS/HSTS
configuration, WAF integration, and reliable cryptographic
protocols—teams can reduce the risk of critical breaches
and sustain long-term reliability. Ultimately, the union of
architecture-level strategies and rigorous development
methodologies equips modern JavaScript systems to remain
both adaptable and secure in an evolving threat landscape.

references

Prusty, N. (2016). 1. Modern JavaScript Applications. Packt
Publishing.

van Ginkel, N., De Groef, W., Massacci, F., & Piessens, F. 2.
(2019). A Server-Side JavaScript Security Architecture
for Secure Integration of Third-Party Libraries. Security
and Communication Networks, 2019, 9629034.

Kornienko, D. V., Mishina, S. V., & Melnikov, M. O. 3.
(2021). The Single Page Application architecture when
developing secure Web services. Journal of Physics:
Conference Series, 2091(1), 012065.

Peguero, K., & Cheng, X. (2021). CSRF protection in 4.
JavaScript frameworks and the security of JavaScript
applications. High-Confidence Computing, 1, 100035.

Flanagan, D. (2011). 5. JavaScript: The Definitive Guide (6th
ed.). O’Reilly Media.

Nikiforakis, N., Invernizzi, L., Kapravelos, A., et al. (2012). 6.
You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. Proceedings of the 2012
ACM Conference on Computer and Communications
Security (CCS), 736–747.

Shevat, A., Jin, B., & Sahni, S. (2018). 7. Designing Web APIs:
Building APIs that Developers Love. O’Reilly Media.

Lekies, S., Stock, B., & Johns, M. (2013). 25 Million 8.
Flows Later: Large-scale Detection of DOM-based XSS.
Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

Page | 27Universal Library of Innovative Research and Studies

Peculiarities of Building a Secure Application Architecture in JavaScript

Barth, A., Jackson, C., & Mitchell, J. C. (2008). Robust 9.
Defenses for Cross-site Request Forgery. Proceedings
of the 15th ACM Conference on Computer and
Communications Security (CCS), 75–88.

De Groef, W., Massacci, F., & Piessens, F. (2014). 10.
NodeSentry: Least-Privilege Library Integration for
Server-Side JavaScript. Proceedings of the 30th Annual
Computer Security Applications Conference (ACSAC),
446–455.

Miller, M. S. (2006). 11. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control.
(Doctoral dissertation). Johns Hopkins University.

Bonér, J. (2016). 12. Reactive Microservices Architecture:
Design Principles for Distributed Systems. O’Reilly Media.

Chen, B., Zavarsky, P., Ruhl, R., & Lindskog, D. (2011). A 13.
Study of the Effectiveness of CSRFGuard. Proceedings of
the 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust, 893–896.

De Ryck, P., Desmet, L., Joosen, W., & Piessens, F. (2011). 14.
Automatic and Precise Client-side Protection Against
CSRF Attacks. European Symposium on Research in
Computer Security (ESORICS), 100–119.

Maffeis, S., Mitchell, J. C., & Taly, A. (2010). Isolating 15.
JavaScript with Filters, Rewriting, and Wrappers.
European Symposium on Research in Computer Security
(ESORICS), 505–522.

Ojamaa, A., & Düüna, K. (2012). Assessing the Security 16.
of Node.js Platform. Proceedings of the 7th International
Conference for Internet Technology and Secured
Transactions (ICITST), 348–355.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

