Universal Library of Innovative Research and Studies Research Article

ISSN: 3065-0003 | Volume 1, Issue 2
Open Access | PP: 97-103
DOI: https://doi.org/10.70315 /uloap.ulirs.2024.0102012

Universal Library Open Access Publications LLC

A Methodology for Migrating Large Products to New Technology
Stacks without Interrupting Development

Nizamutdinov Ilnar Rakipovich
Full Stack Developer, Belgrade, Serbia.

The relevance of this research is determined by the growth of operational costs caused by the accumulation of technical debt
in large monolithic software systems, which directly reduces competitiveness and slows down the time-to-market (TTM)
of new products and functional changes. Unstable technical debt management practices, amplified by the fragmentation
of business logic and the proliferation of isolated responsibility boundaries, transform into substantial direct and indirect
financial losses. The aim of this study is to develop and empirically validate a comprehensive methodology for phased
migration to modern technology stacks, ensuring continuity of development and operations (Zero Downtime) while
simultaneously maintaining a high level of security and predictability of the production environment. The primary research
approach is a systemic and comparative analysis of the architectural patterns Strangler Fig Pattern (SFP) and Branch by
Abstraction (BbA), considered in conjunction with Data Driven Development practices, including the use of Feature Toggles
and centralized server-side testing. Using the case of a large e-commerce service, the effects of implementing the proposed
methodology are demonstrated: a 3-4-fold reduction in TTM (from 4-5 weeks to 1-1.5 weeks) and an approximately 4-fold
decrease in labor effort required for implementing functional changes. It is shown that centralizing business logic and
replacing 4,000 client-side tests with 1,000 server-side integration tests led to a 60% reduction in the number of critical
incidents and to operational expenditure savings of more than 6 million USD annually. It is argued that the synergistic
combination of the BbA and SFP patterns, complemented by the reengineering of the quality assurance system, constitutes
a strategic and economically justified mechanism for the safe reduction of technical debt in high-load industrial systems.
The results obtained have significant practical and theoretical value for chief architects, chief technology officers (CTOs),
and researchers specializing in the modernization and evolution of complex software systems.

Keywords: Non-Disruptive Migration, Technology Stack, Strangler Fig Pattern, Branch by Abstraction, Time to Market,
Technical Debt, Microservice Architecture, Backend for Frontend, Automated Testing, Zero Downtime.

INTRODUCTION

The impact of architectural constraints is particularly acute
in large high load platforms, primarily in the e-commerce

In the context of accelerating digital transformation and the segment. In such systems, fragmentation of business logic and

dominance of Agile and DevOps methodologies, the ability of
an organization to rapidly and controllably bring new features
into production, thereby reducing Time to Market (TTM),
acts as one of the key determinants of competitiveness [1]. At
the same time, a significant proportion of large enterprises
continues to rely on obsolete, monolithic, and highly coupled
information systems that are characterized by a substantial
volume of technical debt (TD). This debt manifests itself not
only as a set of architectural and technological constraints,
but also as a pronounced financial burden that provokes
an exponential increase in operational expenditures and
systematic inhibition of innovation activity [2]. Analytical
reports of leading consulting companies state the necessity
of consistently investing about 15% of the total IT budget in
targeted and structured reduction of TD in order to maintain
sustainable maturity of the digital core of the organization

[3].

duplication of the same functionality across multiple client
platforms (i0S, Android, Web) lead to a significant slowdown
of TTM and complicate change management. In the examined
case of the large e-commerce service Yandex.Market, the
initial architecture required fourfold implementation of
each new feature for different client applications, which
increased TTM to 4-5 weeks and created a critical lag
behind competitors that used centralized architectural
solutions and were able to implement comparable changes
within one week. An additional risk factor was architectural
instability under high load conditions: according to internal
estimates, one hour of platform downtime could lead to
losses of about 130 million rubles in terms of GMV (Gross
Merchandise Value). These circumstances demonstrate
that systematic elimination of technical debt through
architectural modernization is a strategic management
priority that directly affects both market positions and
financial sustainability of the company.

www.ulopenaccess.com

Page | 97

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

Analysis of the specialized literature shows that methods
of incremental modernization aimed at reducing
transformation risks have been developed in considerable
detail. The most well known approach is the Strangler
Fig Pattern proposed by Martin Fowler [4]. This pattern
presupposes the phased replacement of the functionality
of a monolithic system by new services using a facade or
proxy layer for selective rerouting of calls, which makes it
possible to gently decommission obsolete components [5].
This strategy is particularly effective when working with
the external perimeter of the system and with consumer
facing interfaces. At the same time, when it is necessary
to modernize components that are deeply embedded
in the code base and connected with a large number of
upstream modules, it is advisable to apply the Branch by
Abstraction pattern [7]. BbA enables deployment of a new
implementation of a component that coexists with the old
version for an extended period by introducing an abstraction
layer, which allows switching between implementations
without disrupting delivery continuity and without stopping
the current release pipeline [8].

Despite the wide practical recognition of SFP and BbA, existing
publications as a rule consider these patterns in isolation,
without constructing a coherent integration model. There is
a pronounced scientific and methodological gap associated
with the absence of a systematized and empirically validated
comprehensive methodology that, first, would combine SFP
and BbA into a single architectural strategy for simultaneously
solving the tasks of business logic unification and technology
stack migration within one large scale project, and, second,
would make it possible to quantitatively confirm the
economic and operational effectiveness of such a synthesis
in a real Data Driven Development (DDD) environment
where continuity of A/B testing and of the release cycle is
critically important. Insufficient elaboration of metrics, as
well as the absence of established integration models for
safe parallel coexistence of old and new functionality in high
load DDD systems, forms a significant barrier for those who
are responsible for architectural decision making.

Under these conditions, the aim of the study is formulated as
the development and theoretical and empirical substantiation
of a comprehensive methodology for migration of high load
digital products to new technology stacks, with guaranteed
continuity of development and operations, followed by
verification of its effectiveness on the basis of a large
industrial case. To achieve this aim, it is planned, first, to
systematize the Strangler Fig and Branch by Abstraction
architectural patterns that are relevant for non-disruptive
modernization of components with different depth and
density of dependencies; second, to develop a model for
integrating A/B testing, Feature Toggles mechanisms, and
progressive deployment (Canary Release) into the process
of phased migration; third, to carry out a quantitative
analysis of the impact of the developed methodology on key

business indicators (TTM, total cost of changes, operational
stability) using the example of a large e-commerce service;
fourth, to substantiate the role of centralized server side
integration testing as a critical element of the Zero Downtime
methodology.

The scientific novelty of the study lies in the fact that, for
the first time within a single methodological framework, the
Branch by Abstraction and Strangler Fig architectural patterns
are synthesized and empirically verified, integrated into the
Data Driven Development paradigm, with demonstration of
a fourfold reduction of Time to Market under conditions of
large scale commercial operation.

The initial author hypothesis assumes that purposeful
combined application of the Strangler Fig and Branch by
Abstraction patterns, supported by centralized server side
testing and a progressive deployment strategy, makes it
possible to migrate mission critical systems without stopping
the development process, while significantly reducing
operational risks and labor costs of implementing changes.

MATERIALS AND METHODS

The study is based on a comprehensive methodological
approach that integrates the principles of systems
engineering, architectural modeling, and quantitative
performance assessment. Comparative analysis was used
as the primary toolset, allowing the characteristics of
Time to Market, the volume of labor costs, and the level
of operational risks before and after the introduction of
modernization practices to be compared using the example
of an e-commerce platform. Empirical data obtained from
observing the dynamics of TTM, the frequency of critical
incidents, and the structure of budget expenditures formed
the factual basis for verifying the proposed methodology and
assessing its effectiveness in a production environment.

The information base of the study was formed on the basis
of a sample of 20 sources that met strict academic criteria of
relevance (no more than 5 years old). Priority was given to
publications in peer reviewed journals and high level digital
libraries (in particular, IEEE, MDPI), as well as to works
describing widely recognized architectural patterns and
practices associated with Martin Fowler. For the quantitative
substantiation of the economic significance of the issues
under consideration and for confirming the validity of
investments in the elimination of technical debt, analytical
reports of leading consulting agencies were used, including
materials from Accenture, which made it possible to correlate
the results of the case analysis with the broader context of
industry practice.

RESULTS AND DISCUSSION

The obtained results show that the integrated methodology
based on the combination of the Strangler Fig (SFP) and
Branch by Abstraction (BbA) patterns and the reengineering

Universal Library of Innovative Research and Studies

Page | 98

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

of the quality system enabled large scale modernization
of a high load e-commerce service without stopping the
development pipeline, while a pronounced improvement
in both economic and operational indicators was recorded.
The central effect was the achievement of architectural
unification and a significant reduction of Time to Market.
The project on business logic unification was focused on
eliminating code duplication across four client platforms (iOS,
Android, Web Touch, Web Desktop). At the initial stage, each
of these platforms functioned as a separate service with an
autonomous implementation of business rules, which led to
a fourfold increase in labor costs and to inconsistent product
behavior: identical functions could interpret discounts,
prices, or storefront display conditions in different ways.

To overcome these constraints, a Strangler Fig Pattern
strategy was implemented through the introduction of a

specialized architectural layer of the Backend for Frontend
(BFF) type. The BFF facade ensured the migration of key,
highly complex business logic to a centralized server side
level, as a result of which client applications ceased to
compute business rules independently and began to operate
onunified data generated on the backend. Thisled to aradical
reduction in the multiplicity of implementing functional
changes. Whereas previously, for example, adding a new
delivery block required about 20 person days of development
and 12 person days of testing, that is, a total of about 32
person days across all platforms, after the transition to the
centralized architecture an equivalent amount of work began
to be performed in 8 person days, which corresponds to
approximately a fourfold savings in resources. The aggregate
effect of the implemented methodology, including its impact
on operational and economic metrics, is summarized and
presented in Table 1.

Table 1. Quantitative analysis of the impact of business logic unification on key development metrics (compiled by the

author based on [1, 2])

Metric Before unification |After unification|Effect Related factor
(Fragmentation) |(Centralization)

Time to Market (TTM) for|4-5 weeks 1-1.5 weeks Reduction by 3-4|Elimination of fourfold

a new feature times duplication of work

Labor costs per feature 32 person-days 8 person-days Reduction by 4 times |Optimization of client teams’
work (75% savings)

Annual payroll savings|N/A ~ $6,000,000 Reduction of excessive|Staff optimization (reduction

(client-side development) costs by 25-30% from 200 to 80 developers)

Operational inconsistency |High Minimized Improvement of user|Standardization of functionality

experience according to a

reference behavior

catalog of

The economic outcome of the transformation was driven not
only by the reduction of Time to Market, but also by deep
optimization of the organizational and staffing structure. The
decrease in the volume of duplicative development led to a
natural reduction in the need for distributed client teams:
the number of frontend developers was reduced from 120 to
50, and the number of mobile development specialists from
80 to 30. The released human resources were purposefully
reallocated towards strengthening the backend team, which,
under conditions of centralized business logic, became the
key limiting factor for scaling. The total annual effect in terms
of reduced payroll expenses exceeded 6 million USD, which
empirically confirms the proposition that architectural
modernization functions not only as a technical, but also
as a fundamental financial and strategic instrument of cost
management.

Figure 1 demonstrates the impact of the introduction of
unified business logic on Time to Market (TTM).

100

75

50

25

Legacy TTM (4 weeks)

New TTM (1 week)

Fig. 1. Comparative analysis of Time to Market (TTM) before
and after the implementation of unified business logic
(author’s data).

The next stage was an in-depth architectural modernization
that included migrating the web platform from the legacy
Yate framework to a modern technology stack (React]S

Universal Library of Innovative Research and Studies

Page | 99

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

+ TypeScript). The high degree of Yate integration into
the code base, the presence of thousands of components,
and branching internal dependencies made the use of the
Strangler Fig pattern practically inappropriate. Under these
conditions, the Branch by Abstraction (BbA) methodology
aimed at the safe replacement of deeply integrated modules
was employed [7]. The application of BbA made it possible to
deploy the new stack in parallel with the old one, maintaining
the continuity of the release cycle and not disrupting the
operation of the existing functionality.

The specificity of the Yandex.Market platform, which
operates within the Data Driven Development paradigm
and simultaneously supports dozens of A/B experiments,
predetermined the need to ensure experiment-safe
migration. Violation of the integrity of experimental
configurations would have led to the necessity of restarting
A/B tests and a significant delay of the project by weeks or
months. To prevent such risks, the BbA methodology was
integrated with the Feature Toggles mechanism, used in the
role of Experiment Toggles [9]. The introduced Abstraction
Layer performed the functions of an intelligent router: based
on data about the user cohort determined by the active A/B
experiment, requests were routed either to the original
implementation on Yate or to the new implementation on
React]S. This scheme provided the possibility of phased,
incremental replacement of components, starting with less
critical interface areas, while the correctness of the new
stack was confirmed in the course of real A/B experiments.

In addition, the option of targeted rollback to the old stack
for selected user cohorts was preserved when defects or
metric degradation were detected, which corresponds to the
classical interpretation of BbA as a mechanism for controlled
coexistence of the old and new implementations [7].

The results of applying the SFP and BbA architectural patterns
formed a hybrid environment that significantly reduces
modernization risks while simultaneously and radically
increasing the requirements for the quality of integration
testing [16]. The initial quality control model, based on a
fragmented testing contour for four client platforms and
comprising about 4000 disparate tests, was characterized
by high maintenance costs and did not ensure guaranteed
consistency of system behavior at the business logic
level. Under such conditions, implementation of the Zero
Downtime methodology required a targeted reengineering
of the quality system with a fundamental shift of the testing
focus to the server side. Instead of duplicating checks at
the level of client applications, a set of 1000 centralized
server side integration tests was developed, modeling full
scale end-to-end (e2e) user scenarios from product search
to order placement. These tests validate the correctness
of the unified business logic, acting as the key mechanism
for maintaining the integrity and predictability of system
behavior under conditions of parallel coexistence of the old
and new functionality.

Table 2 presents a comparison of testing efficiency using
fragmented and centralized approaches.

Table 2. Comparison of testing efficiency: fragmented vs. centralized approach (compiled by the author based on [16-18])

Parameter Fragmented testing (Legacy) | Centralized server-side | Rationale
testing (Unification)
Testing point Client platforms (4x) Centralized Backend/API | Eliminationoftheneed toduplicate

functional checks

Test volume (coverage
estimate)

~4000 (scattered, duplicative)

~1000 (highly effective
integration tests)

Increased coverage density with
lower maintenance volume

Costs for developing | ~$150,000 (for 4000 tests)

1000 tests (estimate)

~$37,500 (for 1000 tests)

Savings on test development
resources of more than $110,000

Reduction of critical | Unstable Reduction by >60% Introduction of release-blocking
incidents e2e checks
Rollback requirements | Complex, lengthy Fast rollback (Canary/ | Minimization of Time to Recovery

Feature Toggle)

(MTTR)

The financial effect of testing centralization manifested
itself not only in increased predictability of the release cycle,
but also in direct savings on the development of quality
control tools. With an average developer productivity of
four integration tests per day, constructing 4000 tests
in the original fragmented architecture would have cost
approximately 150,000 USD, whereas the development of
1000 new centralized server tests required about 37,500
USD. Thus, savings of more than 110,000 USD were achieved

while maintaining, and in fact strengthening, the quality of
coverage due to its concentration on the unified server side
business logic.

The introduction of mandatory release blocking checks
(mandatory checks) based on this set of centralized eZe
tests made it possible to radically reduce operational
risks. In the previous system configuration, critical errors
in the Production environment occurred regularly due to
inconsistencies in logic between different client platforms;

Universal Library of Innovative Research and Studies

Page | 100

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

after the transition to the new model, the release pipeline
became rigidly dependent on the successful completion
of the full package of automated end-to-end tests, which
technically blocks the deployment of incorrect changes. As
aresult, the frequency of critical incidents in the production
environment decreased by more than 60%, indicating a
substantial increase in the reliability of the platform.

The application of the non-disruptive migration methodology
demonstrated that its success depends not only on technical
solutions, but also on the level of organizational readiness [19].
In the case under analysis, the modernization outcome was
closely linked to thoughtful human resource management:
once business logic unification reduced the need for a large
number of client developers, the released staff positions were
purposefully reallocated to strengthen the backend team,
whose size increased from 6 to 20 developers. This made it
possible to eliminate the structural bottleneck arising from
the concentration of all new centralized logic on the server
side and to nearly triple the speed of backend development,
thereby ensuring steady progress of the migration project.

The combination of the SFP and BbA patterns with
progressive deployment practices further confirmed its
effectiveness. Unlike more rigid and monolithic deployment
strategies, the Canary Release approach makes it possible
to controllably limit the impact area of potential defects by
initially rolling out changes only to a small segment of the
user base and gradually expanding coverage in the absence
of negative effects [14]. This scheme significantly reduces
risks when introducing both architectural changes and new
functionality.

At the same time, a number of limitations were identified
that must be taken into account when planning such
modernization. First, managing a hybrid architecture
during the phase of prolonged coexistence of old and new
code, which can last for months or even years, inevitably
increases the temporal and cognitive complexity of the code
base and imposes higher requirements on the maintenance
discipline of the Abstraction Layer responsible for routing
and logic consistency [5]. Second, facade components — the
abstraction layer in BbA and the BFF facade in SFP — form a
single entry point into the system; with insufficient margin of
robustness, redundancy, and fault tolerance, they themselves
may transform into a new bottleneck or a single point of
failure, which makes their careful design and operational
monitoring critically important [5]. Third, adherence to
Zero Downtime principles imposes strict constraints on
data migration: all changes to schemas and data structures
must be exclusively additive, excluding rapid destructive
modifications. This requires detailed planning of migration
steps, phased introduction of new fields and tables, and
ensuring full backward compatibility between the old and
new code over the entire horizon of the transition period
[13].

The overall analysis of the obtained results shows that
the methodology based on the synthesis of SFP and BbA,
reinforced by centralization of the quality control system and
flexible human resource management, ensures high speed,
reliability, and economic efficiency of migration, allowing
architectural modernization tasks to be solved without
disrupting the continuity of development and operations.

CONCLUSION

The conducted study made it possible to formulate and
empirically validate the effectiveness of a comprehensive
methodology for non-disruptive migration of high-load
software systems. The proposed approach is based on the
strategic synthesis of the Strangler Fig Pattern (SFP) and
Branch by Abstraction (BbA) architectural patterns, adapted
to the conditions of continuous delivery and operation within
the Data Driven Development (DDD) paradigm, which ensures
alignment of architectural decisions with the requirements
of the modern industrial development pipeline.

The results obtained confirm the initial hypothesis that the
combined application of SFP and BbA in conjunction with
centralized testing makes it possible to migrate mission-
critical systems without stopping the development process.
The SFP/BFF combination demonstrated its effectiveness in
solving the problem of unifying and organizing the external
perimeter of business logic, whereas BbA, integrated with
Feature Toggles mechanisms, ensured the safe replacement
of a deeply integrated technology stack, preserving the
integrity of the experimental environment and enabling
experiment-safe deployment.

From the standpoint of operational efficiency, the
methodology led to a radical improvement in key business
indicators. Time to Market for new features decreased by a
factor of 3-4 (from 4-5 weeks to 1-1.5 weeks), and the labor
costs for developing a single functional block were reduced
from 32 to 8 person-days, that is, by a factor of four. Thus,
it has been demonstrated that architectural transformation
focused on centralizing business logic and controlled phased
migration is directly converted into acceleration of the
innovation cycle.

The economic component confirms that such modernization
is not only technologically justified but also financially
beneficial. Optimization of the staffing structure, made
possible by eliminating multiple duplication of work on
client platforms, in combination with the reengineering
of the testing infrastructure, led to total annual savings in
operating expenses exceeding 6 million USD. In this way,
architectural modernization manifests itself as an element
of long-term financial strategy rather than merely a local
engineering project.

A critical factor in ensuring the Zero Downtime regime was
the strategic shifting of the center of gravity of quality control
to the server level. The replacement of 4000 disparate

Universal Library of Innovative Research and Studies

Page | 101

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

client tests with 1000 centralized integration e2e checks
with strictly defined SLAs made it possible to significantly
reduce the probability of introducing inconsistent changes
and to stabilize the release cycle. Empirically, a reduction
of more than 60% in the number of critical incidents in the
production environment was recorded, which indicates
a substantial increase in the predictability and resilience
of the system under load. Taken together, these results
demonstrate that the comprehensive methodology of non-
disruptive migration acts not merely as a set of engineering
practices, but as a strategic instrument that enables
large companies to systematically reduce technical debt,
strengthen competitive positions, and maximize returns on
investment in innovation.

Prospects for further research are associated with the
development of formalized quantitative models that make
it possible to determine the optimal moment for completing
the coexistence period of the old and new architectures,
minimizing overhead costs for maintaining a hybrid system.
Additional scientific and practical interest is represented
by the analysis of the potential of tools based on generative
artificial intelligence (Generative Al) for automating the most
labor-intensive stages of migration, such as constructing
Abstraction Layers and automated generation of migration
scripts. According to the forecasts of analytical agencies,
such solutions are capable of significantly reducing the total
costs of modernization and increasing the predictability of
its outcomes.

REFERENCES

1. Wolfart, D, Assung¢do, W. K., da Silva, I. F, Domingos,
D. C.,, Schmeing, E., Villaca, G. L. D.,, & Paza, D. D. N.
(2021, June). Modernizing legacy systems with
microservices: A roadmap. In Proceedings of the 25th
international conference on evaluation and assessment
in software engineering (pp. 149-159).https://doi.
org/10.1145/3463274.3463334.

2. Allega, P, & Steinmetz, A. (n.d.). Enterprise architecture
technical debt research. Gartner. https://www.gartner.
com/en/information-technology/insights/technical-
debt-reduction-ea-research (date accessed: September
09, 2024).

3. Accenture. (2024). Build your tech and balance your
debt: Why balancing—not eliminating—tech debt is
key to reinventing with a modern digital core. https://
www.accenture.com/content/dam/accenture/final/
accenture-com/document-3/Accenture-Build-Your-
Tech-and-Manage-Your-Debt-2024.pdf (date accessed:
September 10, 2024).

4. Fowler, M. (2024, August 22). Strangler Fig.
martinfowler.com. https://martinfowler.com/bliki/
StranglerFigApplication.html (date accessed: September
12,2024).

10.

11.

12.

13.

14.

15.

Amazon Web Services. (n.d.). Strangler fig pattern.
AWS Prescriptive Guidance. https://docs.aws.amazon.
com/prescriptive-guidance/latest/modernization-
decomposing-monoliths/strangler-fig.html (date
accessed: September 14, 2024). docs.aws.amazon.com

Microsoft. (n.d.). Strangler fig pattern. Azure Architecture
Center. https://learn.microsoft.com/en-us/azure/
architecture/patterns/strangler-fig (date accessed:
September 16, 2024).

Amazon Web Services. (n.d.). Branch by abstraction
pattern. AWS Prescriptive Guidance. https://docs.
aws.amazon.com/prescriptive-guidance/latest/
modernization-decomposing-monoliths/branch-by-
abstraction.html (date accessed: September 20, 2024).

Fowler, M. (2014, January 7). Branch by abstraction.
martinfowler.com. https://martinfowler.com/bliki/
BranchByAbstraction.html (date accessed: September
23,2024).

Hodgson, P. (2017, October 9). Feature toggles (aka
feature flags). martinfowler.com. https://martinfowler.
com/articles/feature-toggles.html (date accessed:
September 28, 2024).

Codefresh. (2023). Blue green deployment vs. canary:
5 key differences and how to choose. Codefresh
Learning Center. https://codefresh.io/learn/software-
deployment/blue-green-deployment-vs-canary-5-
key-differences-and-how-to-choose/ (date accessed:
October 04, 2024).

Alokai. (n.d.). Backend for frontend (BFF): Whatyou need
to know. Alokai Blog. https://alokai.com/blog/backend-
for-frontend (date accessed: October 05, 2024).

ELITEX Systems. (n.d.). Backend for frontend (BFF)—
Why is it essential to know? ELITEX Blog. https://elitex.
systems/blog/backend-for-frontend-bff-everything-
you-need-to-know (date accessed: October 20, 2024).

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni,
R, & Benson, T. A. (2020, July). Zero downtime release:
Disruption-free load balancing of a multi-billion user
website. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and
protocols for computer communication (pp. 529-541).

Octopus Deploy. (n.d.). Blue/green versus canary
deployments: 6 differences and how to choose. Octopus
Deploy. https://octopus.com/devops/software-
deployments/blue-green-vs-canary-deployments/
(date accessed: October 20, 2024).

From monolithic systems to microservices: A comparative
study of performance. (2020). Applied Sciences, 10(17),
5797. https://doi.org/10.3390/app10175797.

Universal Library of Innovative Research and Studies

Page | 102

A Methodology for Migrating Large Products to New Technology Stacks without Interrupting

Development

16.

17.

18.

Software Engineering Institute. (2019). 8 steps for
migrating existing applications to microservices. SEI
Blog, Carnegie Mellon University. https://www.sei.cmu.
edu/blog/8-steps-for-migrating-existing-applications-
to-microservices/ (date accessed: October 22, 2024).

Daniel, B., Dig, D., Garcia, K, & Marinov, D. (2007).
Automated
Proceedings of the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT

testing of refactoring engines. In

symposium on the foundations of software engineering
(ESEC/FSE ’'07) (pp. 185-194). ACM. https://doi.
org/10.1145/1287624.1287651.

Liu, K. (2021). Microservice migration patterns and
how continuous integration and continuous delivery
are affected: A case study of Indicio’s journey towards
microservice (Master’s thesis). KTH Royal Institute
of Technology. https://www.diva-portal.org/smash/
get/diva2:1612613 /FULLTEXTO1.pdf (date accessed:
October 24, 2024).

19.

20.

21.

22.

Ponce, F, Marquez, G., & Astudillo, H. (2019, November).
Migrating from monolithic architecture to microservices:
A Rapid Review. In 2019 38th International
Conference of the Chilean Computer Science Society
(SCCC) (pp- 1-7). IEEE. https://doi.org/10.1109/
SCCC49216.2019.8966423.

Alonso, S., Kalinowski, M., Ferreira, B., Barbosa, S. D,
& Lopes, H. (2023). A systematic mapping study and
practitioner insights on the use of software engineering
practices to develop MVPs. Information and Software
Technology, 156, 107144.

Freire, A. F. A, Sampaio, A. F, Carvalho, L. H. L., Medeiros,
0., & Mendonga, N. C. (2021). Migrating production
monolithic systems to microservices using aspect oriented

programming. Software: Practice and Experience, 51(6),
1280-1307. https://doi.org/10.1002 /spe.2956.

Michael Ayas, H., Leitner, P, & Hebig, R. (2023). An
empirical study of the systemic and technical migration
towards microservices. Empirical Software Engineering,
28(4), 85.

Citation: Nizamutdinov Ilnar Rakipovich, “A Methodology for Migrating Large Products to New Technology Stacks
without Interrupting Development”, Universal Library of Innovative Research and Studies, 2024; 1(2): 97-103. DOI:

https://doi.org/10.70315/uloap.ulirs.2024.0102012.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Universal Library of Innovative Research and Studies

Page | 103

