Universal Library of Innovative Research and Studies

ISSN: 3065-0003 | Volume 1, Issue 2
Open Access | PP: 77-88

DOI: https://doi.org/10.70315 /uloap.ulirs.2024.0102010

Universal Library Open Access Publications LLC

Proactive Cybersecurity Methodology: An Al-Assisted Framework for
Continuous Source-Code Vulnerability Analysis and Remediation

Kateryna Kuznetsova
Software Architect, Palm Harbor, FL, USA.

Amid the exponential acceleration and increasing complexity of software development, orthodox Application Security
practices demonstrably fail to keep pace. The divergence between the velocity of continuous integration and deployment
(CL/CD) and the inertia of manual security reviews accrues security technical debt and escalates the risk of compromise.
This work presents a comprehensive, reproducible methodology for designing and deploying an Al-assisted framework
intended to automate the full vulnerability-management lifecycle in source code. The proposed framework’s architecture
comprises four pivotal modules: a continuous scanning module; a large-language-model (LLM)-based analysis and
prioritization module; a patch (fix) generation module; and a proactive validation module. A step-by-step implementation
protocol, a metric system for evaluating efficacy, and a risk analysis for the application of generative artificial intelligence
were delineated. The scientific contribution lies in a systematic approach to self-healing code, in which Al evolves from an
assistant proposing candidate remedies to an autonomous agent capable of performing the entire security cycle, detection
through integration of remediations. This article targets DevSecOps engineers, security architects, lead developers, and
technical managers responsible for embedding automated vulnerability management into CI/CD pipelines and for adopting

LLM solutions for automatic patch generation and validation.

Keywords: Al-Assisted Security, CI/CD Integration, LLM, Automatic Patch Generation, Proactive Validation, Shift-Left

Security.

INTRODUCTION

Present software engineering is more closely aligned with
the DevOps methodology. The CI/CD pipeline is at the
heart of the DevOps approach. This dramatically shortens
the time it takes to bring new products and new versions
to market, and delivers applications quickly and reliably
(Bodipudi, 2022). However, this acceleration has resulted in
a fundamental tension between the rapid development pace
and the inertia of customary cybersecurity practice. Manual
code reviews, periodic penetration tests, and other classical
control mechanisms, being slow and resource-intensive,
have become systemic bottlenecks incompatible with high-
frequency development cycles.

An attempted remedy has been to integrate automated security
analysis tooling directly into the CI/CD pipeline. Other key
technologies include static analysis (SAST), dynamic analysis
(DAST), and software composition analysis (SCA). SAST scans
code at rest and not during execution. Dynamic application
security testing (DAST) tests the application from an attack
point of view, while software component analysis (SCA)

checks third-party components for known vulnerabilities
(Guduru, 2020). It was a step forward but had created a
different set of problems. The foremost disadvantage is
the false positive rate of SAST scanners. This leads to alert
fatigue, which can cause development teams to miss real
vulnerabilities and lose trust in automated controls. DAST
scanners need deployment and configuration in addition to
the deployment of the application under analysis, and add
operational friction to CI/CD pipelines (Guduru, 2020).

Against this backdrop, the idea of Shift Left Security
emerged. Its philosophical substrate is the transposition
of security practices to the earliest phases of the software
development lifecycle (SDLC) (Singh, 2019). The economic
and technical rationale is unambiguous: identifying and
fixing a vulnerability at coding time is orders of magnitude
cheaper and simpler than remedying the same defect post-
deployment. Shift Left implies integrating security into
every SDLC stage, turning it from an isolated function into
a collective responsibility. Yet operationalizing this concept

at the speed and scale of modern projects requires a new

www.ulopenaccess.com

Page | 77

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

generation of tools capable not only of detection but also of
intelligent analysis and automated remediation.

The purpose of this work is to present and methodologically
justify a reproducible Al-assisted framework that automates
the detection, analysis, prioritization, and remediation of
vulnerabilities in source code, minimizing human intervention
and seamlessly integrating into a CI/CD pipeline.

To achieve this goal, the following objectives were defined:

1. Designamodular framework architecture that allows for
the integration and orchestration of a variety of security
analysis tools.

2. Develop a methodology for semantic analysis, context-
sensitive vulnerability prioritization, and false-positive
filtering using large language models (LLMs).

3. Substantiate the use of generative artificial intelligence
within a procedural pipeline for the automatic

construction of secure and functionally correct patches.

4. Create a step-by-step protocol for adopting and
configuring the framework into the existing development
process, including rules for human-system interaction
(Human-in-the-Loop).

5. Formulate objective KPIs to monitor overall performance
of the framework, and to identify and assess the specific
risks of generating Al code, and how these risks can be
reduced.

The scientific novelty is a systematic pathway to self-healing
code, achieved via a conceptual transition from an Al-
assistant paradigm to an Al-agent paradigm. In the assistant
regime, Al remains auxiliary, surfacing issues and proposing
alternatives, while humans retain primacy over analysis and
integration.

The proposed methodology specifies a framework in which Al
operates as an autonomous security agent. Such an agent can
execute the entire cycle end-to-end: triaging scanner outputs
and suppressing noise; generating patches; validating them;
and, in defined cases, automatically integrating remediations
into the codebase. Human expertise is engaged not as
obligatory labor but as a supervisory control at pre-specified,
critical junctures.

Unlike extant works that often fixate on narrow sub-tasks
(e.g., enhancing scanning or code generation alone), this
methodology provides a holistic, end-to-end process. It
fuses disparate technologies into a single system capable
of proactively maintaining and continuously improving an

application’s security posture, forming the practical substrate

for self-healing code.

ARCHITECTURE OF THE AI-ASSISTED SECURITY
FRAMEWORK

This chapter expounds the technical architecture of the
proposed framework. It is modular by design, ensuring
flexibility,
technology stacks. Each module fulfills a sharply defined

scalability, and compatibility with diverse

function within a unified vulnerability-management

pipeline.

Continuous Scanning Module: Orchestrating
Analyzers

Timely and comprehensive identification of potential
vulnerabilities is foundational to any security process.
The continuous scanning module accomplishes this by
integrating and orchestrating three core analyzers to provide

multilayered protection (Guduru, 2020).

SAST (Static Application Security Testing). Analysis of source
code and its artifacts without execution. Tools such as SAST
tools like Semgrep or SonarQube effectively detect a broad
spectrum of vulnerabilities via pattern analysis, data-flow
inspection, and configuration checks. Within the framework,
SAST scanning is the first line of defense and triggers on

every commit to the version control system.

DAST (Dynamic Application Security Testing). Analysis of
a running application, typically performed in a test or pre-
release/staging environment. Tools such as OWASP ZAP
emulate adversary requests and analyze system responses.
Because DAST is resource-intensive and examines runtime
behavior, it is usually run against release candidates (for
example, once before a release) or on scheduled pre-release
pipelines rather than on every commit. This approach
surfaces runtime-emergent vulnerabilities while avoiding
the high cost and instability of running full DAST scans on

every push.

SCA (Software Composition Analysis). Scanning third-
party libraries and project dependencies with tools such as
Dependency-Check and Snyk that map project dependencies
to public vulnerability databases such as the NVD to identify

known vulnerabilities in open source dependencies.

Instead of running all analyses concurrently, the CI/CD
pipeline uses orchestration to balance feedback latency and

the depth of analysis, as shown in Figure 1.

Universal Library of Innovative Research and Studies

Page | 78

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Commit to Git

4peline

Build stage
v
4

un SCanners Deploy to staging environment

SAST & 5CA

v v

Code and dependency analysis Analysis of running application

N —

Unified aggregated report

!

| Al Analysis Module |

Figure 1. Scheme of integration and orchestration of SAST, DAST, and SCA scanners within the CI/CD pipeline

As shown, SAST and SCA run early, providing developers with immediate post-commit feedback. DAST is run after
deployment into a test environment. Results from all scanners are aggregated into a single report that serves as input to the
next module.

Al-Based Analysis and Prioritization Module

Raw outputs of automated scanners often contain substantial informational noise, especially false positives (Guduru, 2020).
This module performs intelligent post-processing, transforming noise into actionable, context-relevant tasks.

A central tension motivates the design: both traditional SAST tools and LLMs (if used as primary detectors ab initio) can
produce considerable false positives (Guduru, 2020). The framework resolves this via synergy. The LLM is not the primary
detector; it functions as an intelligent post-processor and verifier for rule-based SAST findings.

Consider the workflow. A SAST scanner supplies arule-grounded fact, a putative vulnerability ata specific code locus. The LLM
receives this fact, along with broader context: the vulnerable snippet, surrounding functions/classes, developer comments,
and possibly version-control metadata (e.g., author, last-modified date). Given this enriched semantic substrate, the LLM
addresses whether a vulnerability exists, but is this SAST alert relevant and action-worthy in this specific software and
business context. This operationalizes alarm triage, privileging effective noise suppression over absolute detection accuracy
(Chang, 2016). The fusion of formal static analysis (SAST) with semantic comprehension (LLM) overcomes the limitations
of either approach in isolation.

Post-filtration, the module assigns each confirmed vulnerability a context-aware criticality rating. Unlike vanilla CVSS
scoring, technical severity in vacuo, the proposed model incorporates project- and architecture-specific factors. Grounded in
an academic taxonomy of prioritization metrics, it evaluates multiple categories as shown in Table 1.

Universal Library of Innovative Research and Studies Page | 79

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Table 1. Factors for contextual vulnerability prioritization (Le et al., 2022)

Metric factor Description Data source

Severity CVSS score, Base severity rating of the vulnerability provided by |Scanner report, NVD
the scanner.

Vulnerability type Classification of the weakness (e.g.,, CWE-89: SQL Injection, CWE-|Scanner report
(CWE) 79: XSS).
Exploitability Presence of a public exploit: Is there a known and publicly available | Threat-intelligence databases
exploit code for this vulnerability?
Attack complexity How difficult is it for an attacker to reproduce the attack (are|CVSS, LLM code analysis

(AC) special conditions or privileges required)?

Contextual factor, Would a business-critical module be affected (e.g., payment|Service map, code annotations
Component criticality | gateway, authentication service)?

Contextual factor, Is the vulnerable code reachable from the public network, or is it| Network architecture analysis,
External exposure used only by internal services? Ingress configuration
Contextual factor, How often is the file/module changed? High activity can increase|Git commit history

Development activity |regression risk.

The final criticality rating is computed as a weighted sum of these factors, with configurable weights based on an organization’s
security policy.

Patch (Fix) Generation Module

Once a vulnerability is confirmed and prioritized, the patch-generation module leverages generative Al to automatically
construct code that remediates the issue. This process builds upon advances in Automated Program Repair (APR).

State-of-the-art research identifies several LLM-based APR paradigms (Zhang et al,, 2024): model fine-tuning on domain-
specific data; prompting; embedding LLMs in procedural pipelines; and employing agentic frameworks. For this framework,
a hybrid approach combining a Procedural Pipeline with Analysis-Augmented Generation (AAG) is used. The LLM operates
within a strict, deterministic algorithm, yet its prompts are dynamically enriched with precise technical artefacts produced
earlier. This markedly elevates the semantic correctness and relevance of generated patches (Parasaram, 2024).

The process is as follows. The LLM receives exhaustive vulnerability data, its CWE type, precise code location (file, line),
the vulnerable snippet, and contextual analysis results (e.g., that a function processes unvalidated user input). A detailed
prompt is then formed, comprising not only the problem statement but facts distilled from static analysis (e.g., the causal
data-flow trace). The prompt explicitly encodes project coding-style constraints and requires code that both eliminates the
vulnerability and remains readable and maintainable. The LLM produces one or more candidate fixes. Built-in heuristics
(e.g., minimal diff size, stylistic conformity) can auto-select the most promising candidate. Figure 2 illustrates the sequence.

Analysis Module Generative Model (LLM) Codebase

Pass facts: vulnerable code, CWE, context, data flow

Construct prompt (analysis-augmented)

>

Generate patch variant

\J

Generate patch variant

\J

Return generated patches for validation

Analysis Module Generative Model (LLM) Codebase

Figure 2. Sequence diagram for the patch generation process using an LLM enriched with data analysis

Universal Library of Innovative Research and Studies Page | 80

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Validation and Integration Module

A generated patch cannot be integrated into the codebase
absent rigorous verification of its correctness and safety.
The standard approach of merely executing the existing
regression test suite is necessary yet insufficient (Wang
et al,, 2021). The extant tests may fail to cover edge cases
associated with the applied fix, and the patch itself may
inadvertently introduce subtler defects. Consequently, the
proposed framework implements a multilayer process of
proactive verification rather than passive validation.

The proactive verification process, presented in Figure 3,
comprises the following stages. The first step is to execute
the whole corpus of existing unit and integration tests.

Generated patch

l

Run regression tests?

N

Fassed

v

Al penerates new tests - edge cases

l

Run extended test suite

AN

Passed

v

Failed

Failed Opticnal: DAST scanning
K jr/}‘.l,nsu-:n:essful Successtul
Reject patch Proceed

l

Auto-merge or human review?

Figure 3. The process of proactive validation of an Al-
generated patch

If any test fails, the patch is immediately rejected. Upon
successful completion of regression, the system advances to
a pivotal stage. A separate LLM instance (or the same model
with a distinct objective) receives as input a description of
the original vulnerability together with the generated patch.
Its task is to produce a new, targeted test suite expressly
designed to validate the fixand to probe boundary conditions.
For example, if the patch remediates an SQL injection, the Al

can synthesize tests that submit inputs containing various
special characters, quotes, and comments. The system
executes an expanded test suite that includes both the
original regression tests and the new Al-generated tests. For
high-risk vulnerabilities, an additional targeted DAST scan
focused on the modified component may be launched.

Only after all validation stages are passed successfully does
the system initiate integration. The generated patch, the
description of the remediated vulnerability, the full test
reports, and LLM-augmented rationalization of the decision-
making process are included in an automatically created
pull request (or merge request), which if configured in the
Human-in-the-Loop protocol (see previous chapter) can
either automatically get merged to the main development
branch or explicitly require human approval to do so.

This multilayer approach to software verification can help
build confidence in the correctness of the automatically
generated fix and help to prevent regression defects in
software programs.

AUTHOR’S METHODOLOGY FOR FRAMEWORK
DEPLOYMENT: A STEP-BY-STEP PROTOCOL

Ultimately, however, even the most elegant piece of
technology requires a successful implementation within the
existing processes. This chapter presents the methodology
used throughout this book. It will guide the reader through
the deployment and tuning of the Al-supported security
architecture from beginning to end. This answers the
question of how, and gives the study its practical value.

Stage 1: Integration with the Repository and CI/CD

The most important aspect is about the integration of the
framework into the version control system (a VCS) and the
continuous integration/continuous delivery (CI/CD) pipeline
of the development environment.

It then interfaces with a version control software in order to
detect actions, such as commits (pushes) to the repository
and the creation of pull/merge requests. Webhooks in the
VCS achieve this. Examples of VCS include GitHub, GitLab,
Bitbucket, etc. An entry point, Endpoint, is created which is
an API service that receives POST requests from webhooks.
Then, you need to register the webhook with the VCS. This
is typically achieved by creating a new webhook in the
repository settings pointing to the URL of the deployed API
service. The webhook can be configured to fire upon push
events (to analyze commits on branches) and pull_request
events (to inspect pull requests prior to merging). A secret
token is also set up to verify that the request is from the VCS
by signing the request. Figure 4 shows the ocode for this
entire algorithm.

Universal Library of Innovative Research and Studies

Page | 81

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

W5

ersion Control System - GitHub Gitlab Bitbucket

1

Configure webhook

Webhook

POST events: push, pull_request

‘ APl endpoint - receiver service

r
'u'enf'_.' signature with s=cret token

ﬁh/ \

Routs event to handler RE]Ect request
pl.lshfﬂem pull_reguest event
Analyze commits ‘ Analyze pull reguest changes post commnent or status
Trigger scanning madule

|

Integrate scanner inta CI-C0 pipeline ‘

madify pipeline file or add job

CI-CD pipeline nuns scanner job ‘

l

Execute scan jobs and tests

N -

‘ Generate report and artifacts

i

provide gate dacision

|J.I'|Efge-gal.eur|'u.nm r@new‘

Figure 4. Algorithm for integration with a repository and CI/CD

Consider integration into the CI/CD pipeline. The framework modules, especially the scanning module, must be embedded
into the existing CI/CD pipeline. This is done by modifying the pipeline configuration file, as illustrated in Figure 5.

Universal Library of Innovative Research and Studies Page | 82

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-
Code Vulnerability Analysis and Remediation

build

test
security_scan
deploy_staging
dast_scan

security_scan
ﬂsr!binfframewcrk—scanner --type sast --output report.json

[report.json]

: security_scan

fusr/bin/framework-scanner --type sca --output report_sca.json

[report_sca.json]

dast_scan

—_} sr/bin/framework-scanner --type dast --url $STAGING_URL --output report_dast.json
["deploy_staging™]

Figure 5. Example of module integration for GitLab CI

In this example, separate jobs are defined for SAST and SCA scanning, executed at the security_scan stage. DAST scanning is
launched later, after the application is deployed in the staging environment. The results (artifacts) of each scan are passed
to the Al analysis module.

Stage 2: Configuration and Fine-Tuning of the Al Analyzer

The effectiveness of the Al analyzer depends directly on its ability to internalize the project’s specific requirements. A boxed
solution without additional tuning may yield suboptimal outcomes. It began with calibrating the prioritization model. The
model uses weighted coefficients for each factor described in Table 1. The calibration process includes the following steps.
Together with product owners and architects, a map of the application’s key business components is compiled (e.g., auth-
service, payment-gateway, user-profile-api). Weight coefficients are established for the prioritization factors. For example,
in an e-commerce project, a vulnerability in the payment gateway should carry the most significant weight, even if its CVSS
score is not critical. A vulnerability with a publicly available exploit should also receive elevated priority. After initial setup,
the system operates in shadow mode for several sprints. The security team analyzes the Al-proposed priorities, compares
them with expert judgment, and adjusts the weights if necessary. The entire process is shown in Figure 6.

Start Calibration Process

l

Define critical assets - product owners and architects

l

Assign priority weights

—

Provide project context to LLM via RAG lterative tuning in shadow mode - observe for several sprints

e -

Internal documentation Project wiki - knowledge base Fix history - example commits Deploy calibrated prioritization model

Security team reviews Al priorities and expert assessment Menitor effectiveness and metrics

If needed\. If drift ir issues

Adjust weights

Figure 6. Algorithm for Configuration and Fine-Tuning of the Al Analyzer

Universal Library of Innovative Research and Studies Page | 83

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

To improve the accuracy of analysis and patch generation, the LLM must be provided with additional project-specific context.
This can be implemented via the use of the Retrieval-Augmented Generation (RAG) model, where the prompt is augmented
with context such as coding standards, architectural diagrams, application programming interface (API) documentation,
articles on common code errors and remediation patterns in the project, and fix commits for previously identified
vulnerabilities that act as a gold standard for the LLM.

Stage 3: Human-in-the-Loop Protocol

The goal of the framework is to reduce the need for human labor, not to eliminate humans, and finding this right balance is
critical for success. The Human-in-the-Loop protocol describes the way a human and the system are expected to interact.
The interaction between the software and the human developer is determined by a decision matrix (Table 2) based on the
computed vulnerability criticality rating and the component criticality rating. The decision matrix indicates the extent of
control the system may exercise.

Table 2. Decision matrix for the Human-in-the-Loop protocol

Vulnerability Criticality of the|System action Rationale
criticality rating |affected component

Low Non-critical (U1, | Fully autonomous: generate, validate, and|Minimal risk to business
documentation, auxiliary |automatically merge to the main branch. |processes. Maximizes developer
scripts) time savings.

Medium Non-critical Semi-autonomous: generate, validate,|Risk remains low, but the change

and create a Pull Request for optional|mayrequireattentiontomaintain
review. Auto-merge can be enabled after a|code consistency.

timeout.

Medium Business-critical ~ (API,|Semi-autonomous: generate, validate, and|Potential impact on key
core, data-processing|create a Pull Request that requires review |functionality requires human
services) by one developer. confirmation.

High / Critical Any Assistant mode: generate patch + detailed |[High risk of regression,

report, create a Pull Request that requires |incomplete fixes, or introduction
reviewbyatleasttwodevelopers (including|of new bugs. Maximum human
a senior engineer or team lead). control required.

This matrix is configurable and should be adapted to the team’s specific processes and culture.
Stage 4: Setting Up the Automated Testing Pipeline

The reliability of automatic fixes directly depends on the quality and completeness of test coverage. The automated testing
pipeline must be prepared to interact with the proactive validation module. Begin by establishing a baseline regression
test suite. Before the framework rollout, an audit of existing test coverage should be conducted. Minimum coverage levels
should be met for: core business logic features (unit tests), interactions between the main system services or components
(integration tests), and main user adventures covering registration, checkout, search, and view order (end-to-end tests).

For example, to integrate the validation module with a testing pipeline (such as Jenkins, GitLab Runner, GitHub Actions), the
testing pipeline must perform the following steps.

Dynamic test intake. The CI/CD system must be able to accept Al-generated test code as input and execute it in the same
environment as the main tests.

Resultaggregation. The results of both static (regression) and dynamic (Al-generated) tests must be collected and transmitted
back to the framework.

Pull Request lifecycle management. The CI/CD system should be able to update the PR’s state. The PR must be automatically
marked as failed if any tests fail. The PR must be blocked from being merged upon failure. Passing marks it automatically
when all tests pass. The complete algorithm for this stage is shown in Figure 7.

Universal Library of Innovative Research and Studies Page | 84

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Start - Test Ccoverage preparation

¥

Test coverage audit

_—

Create baseline regression tests

G

Define minimal requirements - Unit, Integration, End-to-End

'

Configure Cl pipeline - fenkins Gitlab Runner GitHub Actions

Yl Y

| Cl accepts Al-generated tests ‘ | Cl runz tests in same environment a5 main tests

r
Aggregate test results - static and dynamic

Send aggregated results to validation module

All tests passad?
If Yes
Mark PR failed and block merge Mark PR passed
\ / v
Hotify developers with actionable repart | ‘ Allow merge or continue pipeline

/

Monitor coverage and test effectivensss

Figure 7. Algorithm for Setting Up an Automated Testing Pipeline

Following this step-by-step protocol allows you not only to install the framework but also to incorporate it into the
development process and tailor it to the specific needs of a project and its risk profile.

EFFECTIVENESS EVALUATION AND RISK MANAGEMENT

The technologies of Al-based code generation have not yet been established in practice. For them to succeed, justifying
their use, showing their value, and understanding their risks and limitations are necessary. This chapter presents metrics
for assessing the framework, investigates its risk profile, and discusses ways to reduce risks in the context of software
engineering.

Key Performance Indicators (KPI)

To measure the added value from the presence of the Al-enabled architecture and to determine its technical feasibility,
appropriate KPIs will be defined to track progress, detect bottlenecks, and show business value to stakeholders. The main
KPIs are provided in Table 3.

Universal Library of Innovative Research and Studies Page | 85

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Table 3. Key performance indicators (KPIs) for evaluating the framework’s performance

detected during validation.

Metric Description Formula / Measurement method |Target value
MTTR (Mean |Average time from vulnerability|Measure elapsed time per finding|Reduction >50% compared
Time to detection to integration of its fix into|(detection — fix merged). Aggregate|to the manual process
Remediate) the main branch. A key indicator of how|as mean over a period (e.g., sprint/

quickly the team responds to threats. |month) and compare vs. baseline

(manual process).

Automation Percentage of vulnerabilities fully|(Number of vulnerabilities closed|>70% forlow-and medium-
Rate (%) remediated automatically (no manual|automatically / Total vulnerabilities) | severity vulnerabilities

code intervention) according to the|x 100%. Track by PR metadata/

Human-in-the-Loop protocol. automation logs.
Developer Estimated developer time saved on|Sumoftimesavedperissue(estimated|Continuous increase over
Time Saved analysis, remediation, and testing|or from time tracking) compared to|time
(person- for vulnerabilities automated by the|historical baselines; or measured
hours) framework. via time-entry comparisons before/

after automation.

False Positive |Share of scanner (SAST/DAST) alerts|(Number of alerts marked and |Stable >80%
Reduction Rate |that the Al analyzer correctly classifies|confirmed as false positives / Total
(%) as false positives and therefore do not|scanner alerts) x 100%. Validate via

require developer attention. sampling or feedback loop.
Regression Share of automatically generated|(Number of auto-patches that|<1%
Rate (%) patches that caused regressions|introduced regressions / Total

(breaking existing functionality) |auto-patches validated) x 100%.

Measured during the CI/validation
stage.

Regular collection and analysis of these metrics enables not only evaluating the framework’s current effectiveness but also
making informed decisions about its further tuning and evolution.

Managing the Risks of AlI-Generated Code

Still, the risks of having generative Al rewrite source code need to be managed. It is an oversimplification to say that Al-
written code is of lower quality than other code. Research has shown that the defect and vulnerability profile of Al and
human code is qualitatively different (Fu et al., 2023).

In contrast, Al-generated code was observed to be less complex than human-generated code. Still, with a higher prevalence
of CWE-78 (0S Command Injection) and other classes of vulnerabilities, like CWE-798 (Use of Hard-coded Credentials),
CWE-532 (Information Exposure Through Log Files), etc., Business logic and exceptions (CWE-754) and state management
patterns were more popular in human-written code than in Al-generated code (Fu et al.,, 2023).

This divergence has direct practical implications. Standard code-review practices that prioritize the discovery of logical
errors may be less effective for Al-generated patches. Accordingly, risk mitigation must be purposeful and tailored to the
specificities of Al It should include specialized rules for static analysis (SAST), i.e., tuning SAST tools to target those CWE
classes most characteristic of LLM output. If a patch requires manual review, the checklist must include Al-specific items,
such as checking for hard-coded secrets or unsafe system-command invocations. Automated checks should be introduced to
block merges upon detection of explicit violations, such as the presence of secrets in code.

Table 4 presents a matrix of principal risks associated with the framework and the proposed mitigation methods.

Table 4. Matrix of risks and mitigation methods (Fu et al., 2023)

Risk Probability [Impact |Mitigation method
Al introduces a new vulnerability | Medium High 1. Multi-layer proactive validation (see Ch. 1.4).
(e.g., CWE-78) 2. Specialized SAST rules for generated changes.
3. Targeted DAST scanning of the patched component.
Patch causes regression (breaks|Medium Varies |1.Comprehensive regression test suite.
existing functionality) 2. Al-generation of additional validation tests for edge cases.

Universal Library of Innovative Research and Studies Page | 86

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

Suboptimal or non-performant|High Low 1. Code review for patches touching performance-critical
fix components.

2. Monitor performance metrics in the staging environment.
Overreliance on automation High Medium | 1. Clear and strict Human-in-the-Loop protocol.

2. Regular developer training on framework behavior and
limitations.
3. Periodic audit of automatically merged changes.

Case Study (Hypothetical)

To depict how the framework works and its implications
for the core performance measures, it is considered a
hypothetical case.

A developer changes the reporting module, creating an SQL
injection (CWE-89) vulnerability within the data filtering
code of the module. The reporting module is not a critical
service to business functions. Consider the framework’s
workflow.

1. Commit and CI/CD kickoff (Time: 00:00): The developer
pushes code to the repository. The CI/CD pipeline is
invoked automatically.

2. Detection (Time: 00:01): In the security_scan stage, the
SAST tool detects a potential SQL injection upon sending
the report to the Al analysis module.

3. Analysis and prioritization (Time: 00:02): The LLM
realizes that unregulated user input is concatenated into
the SQL statement without sanitization and classifies it
as a true positive. People prefer the term CWE-89 for the
vulnerability type. The module is not considered critical
given its medium rating.

4. Generate patch (Time: 00:04): The generation module
receives the request and generates a patch to replace
string concatenation with parameterized queries
(prepared statements).

5. Validation (Time: 00:10): The validation module runs.
All regression tests pass successfully. The Al then
generates three new unit tests that verify handling of
inputs containing single quotes, double quotes, and SQL
comment characters. These tests also pass successfully.

6. Integration (Time: 00:12): The system automatically
creates a Pull Request. According to the decision matrix
(Table 2), for a medium-level vulnerability in a non-
critical component, the PR is routed for optional review.

7. Review and merge (Time: 00:15): The developer is
notified, spends a few minutes reviewing the evidently
correct change, and approves the merge.

Now consider the comparative gain. With the Al framework,
MTTR is 15 minutes, and developer time spent on review is
3-5 minutes; without the framework (traditional process),
MTTR is 4-8 working hours (the vulnerability would be
discovered either at the following manual review or during

scheduled scanning, then placed into the backlog, taken into
work, fixed, and tested), and developer time is 1-2 hours for
report analysis, problem localization, code authoring, test
execution, and PR creation.

This case clearly demonstrates how the framework drastically
reduces MTTR and minimizes developer distraction by
routine security tasks, thereby proving its economic and
operational effectiveness.

CONCLUSION

This study developed and methodologically substantiated
a comprehensive proactive cybersecurity methodology
based on an Al-assisted framework for continuous analysis
and remediation of code vulnerabilities. The presented
framework, comprising scanning, Al analysis, patch
generation, and proactive validation modules, constitutes a
systemic solution that bridges the fundamental gap between
the velocity of modern CI/CD processes and the inertia of
traditional security approaches.

The key conclusion is the validation of a paradigm in which
artificial intelligence evolves from a passive assistant to an
autonomous security agent. Through intelligent processing
of scanner reports, context-dependent threat prioritization,
automatic generation of semantically correct fixes, and
multilayer verification of those fixes, the framework enables
parity between development speed and the requisite level
of software security. The step-by-step deployment protocol
and the risk-management system ensure the methodology’s
practical applicability and reproducibility in real-world
production settings. Thus, the Al-assisted framework can
be regarded as a new standard of proactive cybersecurity
within the DevOps ecosystem.

The practical significance of the proposed methodology
extends beyond mere technological refinement. Its adoption
enables organizations to achieve substantial business
outcomes. The mean time to remediation (MTTR) reduces
from days or hours to minutes because the entire vulnerability-
management workflow and pipeline becomes automated,
giving the opponent a smaller window of opportunity.
Developer and security engineers spend manual effort
analyzing false positives. These same engineers spend time
prioritizing findings and writing boilerplate fixes for similar
recurring issues, freeing up time to work on more complex
and revolutionary solutions. This proactive patch validation,
using a suite of Al-based targeted tests, lowers the risk of

Universal Library of Innovative Research and Studies

Page | 87

Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous Source-

Code Vulnerability Analysis and Remediation

regressions and increases developer confidence, enabling
true Shift Left Security by displacing reactive firefighting in
production as the primary approach to preventing threats in
the software development lifecycle.

Overall, the work discovers many new directions. It would
be interesting to apply reinforcement learning to train the
Al analyzer to prioritize patches and patch generation for
new, unseen attack patterns based on developer feedback
(e.g, PRs accepted and rejected by a developer) and the
production environment (e.g., real security incidents).

Applying an analogous agentive approach to automate
other labor-intensive code-quality tasks. This may include
automatic refactoring to eliminate code smells, performance
optimization based on profiling data, and improvement of
code readability in accordance with project standards.

For multimodal LLMs trained on code and other system
artifacts (e.g., architectural diagrams (C4, UML), tech specs,
user stories, etc.), the advantage is system-wide awareness
that enables system fixes to comply with system architecture,
rather than band-aiding local issues and ignoring system
architecture. Some speculate that continued progress in this
area may lead to fully autonomous, self-correcting, and self-
improving software development.

REFERENCES

1. Bodipudi, A. (2022). Integrating Vulnerability Scanning
with Continuous Integration/Continuous Deployment
(CI/CD) Pipelines. European Journal of Advances in
Engineering and Technology, 9(2), 49-55. https://ejaet.
com/PDF/9-2/EJAET-9-2-49-55.pdf

2. Chang, B.-Y. E. (2016). Cooperative Program Analysis:
Tackling the Software Crisis by Bridging the Reasoning
Gap between Users and Tools. The University of Colorado.
https://plv.colorado.edu/bec/cv/chang-portfolio.pdf

Fu, Y, Liang, P, Tahir, A, Li, Z, Shahin, M., & Yu,].
(2023). Security Weaknesses of Copilot-Generated
Code in GitHub. Arxiv. https://doi.org/10.48550/
arXiv.2310.02059

Guduruy, S. (2020). DevSecOps Automation: SAST/DAST
Integration in GitLab CI/CD with Semgrep, OWASP ZAP,
and Dependency-Check. International Journal of Science
and Research (IJSR), 9(12), 1893-1898. https://doi.
org/10.21275/sr20127082903

Le, T. H. M., Chen, H., & Babar, M. A. (2022). A Survey
on Data-driven Software Vulnerability Assessment and
Prioritization. ACM Computing Surveys, 55(5), 1-39.
https://doi.org/10.1145/3529757

Parasaram, N. (2024). Synergising Program Analysis and
Machine Learning for Program Repair Nikhil Parasaram
[Dissertation]. https://discovery.ucl.ac.uk/id/
eprint/10198758/2 /Nikhil_s_Thesis__Corrections_-5.
pdf

Singh, B. (2019). Shifting Security Left: Integrating
DevSecOps into Agile Software Development Lifecycles.
The Research Journal (TR]), 5(1), 27-35. https://nebula.
wsimg.com/632d1b60e36517a3c0cd0af4693109b3?7A
ccessKeyld=809C1E9E538F4C38BEAB&disposition=0
&alloworigin=1

Wang, S., Wen, M,, Lin, B.,, Wu, H,, Qin, Y., Zou, D., Mao, X., &
Jin, H. (2021). Automated patch correctness assessment.
Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 968-
980. https://doi.org/10.1145/3324884.3416590

Zhang, Q., Fang, C., Xie, Y., Ma, Y., Sun, W,, & Yang, Y. (2024).
A Systematic Literature Review on Large Language
Models for Automated Program Repair. Arxiv. https://
doi.org/10.48550/arxiv.2405.01466

properly cited.

Citation: Kateryna Kuznetsova, “Proactive Cybersecurity Methodology: An Al-Assisted Framework for Continuous
Source-Code Vulnerability Analysis and Remediation”, Universal Library of Innovative Research and Studies, 2024; 1(2):
77-88. DOI: https://doi.org/10.70315 /uloap.ulirs.2024.0102010.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

Universal Library of Innovative Research and Studies

Page | 88

