ISSN: 3065-0003 | Volume 1, Issue 2

Open Access | PP: 77-88

DOI: https://doi.org/10.70315/uloap.ulirs.2024.0102010

Proactive Cybersecurity Methodology: An AI-Assisted Framework for Continuous Source-Code Vulnerability Analysis and Remediation

Kateryna Kuznetsova

Software Architect, Palm Harbor, FL, USA.

Abstract

Amid the exponential acceleration and increasing complexity of software development, orthodox Application Security practices demonstrably fail to keep pace. The divergence between the velocity of continuous integration and deployment (CI/CD) and the inertia of manual security reviews accrues security technical debt and escalates the risk of compromise. This work presents a comprehensive, reproducible methodology for designing and deploying an AI-assisted framework intended to automate the full vulnerability-management lifecycle in source code. The proposed framework's architecture comprises four pivotal modules: a continuous scanning module; a large-language-model (LLM)-based analysis and prioritization module; a patch (fix) generation module; and a proactive validation module. A step-by-step implementation protocol, a metric system for evaluating efficacy, and a risk analysis for the application of generative artificial intelligence were delineated. The scientific contribution lies in a systematic approach to self-healing code, in which AI evolves from an assistant proposing candidate remedies to an autonomous agent capable of performing the entire security cycle, detection through integration of remediations. This article targets DevSecOps engineers, security architects, lead developers, and technical managers responsible for embedding automated vulnerability management into CI/CD pipelines and for adopting LLM solutions for automatic patch generation and validation.

Keywords: AI-Assisted Security, CI/CD Integration, LLM, Automatic Patch Generation, Proactive Validation, Shift-Left Security.

INTRODUCTION

Present software engineering is more closely aligned with the DevOps methodology. The CI/CD pipeline is at the heart of the DevOps approach. This dramatically shortens the time it takes to bring new products and new versions to market, and delivers applications quickly and reliably (Bodipudi, 2022). However, this acceleration has resulted in a fundamental tension between the rapid development pace and the inertia of customary cybersecurity practice. Manual code reviews, periodic penetration tests, and other classical control mechanisms, being slow and resource-intensive, have become systemic bottlenecks incompatible with high-frequency development cycles.

An attempted remedy has been to integrate automated security analysis tooling directly into the CI/CD pipeline. Other key technologies include static analysis (SAST), dynamic analysis (DAST), and software composition analysis (SCA). SAST scans code at rest and not during execution. Dynamic application security testing (DAST) tests the application from an attack point of view, while software component analysis (SCA)

checks third-party components for known vulnerabilities (Guduru, 2020). It was a step forward but had created a different set of problems. The foremost disadvantage is the false positive rate of SAST scanners. This leads to alert fatigue, which can cause development teams to miss real vulnerabilities and lose trust in automated controls. DAST scanners need deployment and configuration in addition to the deployment of the application under analysis, and add operational friction to CI/CD pipelines (Guduru, 2020).

Against this backdrop, the idea of Shift Left Security emerged. Its philosophical substrate is the transposition of security practices to the earliest phases of the software development lifecycle (SDLC) (Singh, 2019). The economic and technical rationale is unambiguous: identifying and fixing a vulnerability at coding time is orders of magnitude cheaper and simpler than remedying the same defect post-deployment. Shift Left implies integrating security into every SDLC stage, turning it from an isolated function into a collective responsibility. Yet operationalizing this concept at the speed and scale of modern projects requires a new

Proactive Cybersecurity Methodology: An AI-Assisted Framework for Continuous Source-Code Vulnerability Analysis and Remediation

generation of tools capable not only of detection but also of intelligent analysis and automated remediation.

The **purpose** of this work is to present and methodologically justify a reproducible AI-assisted framework that automates the detection, analysis, prioritization, and remediation of vulnerabilities in source code, minimizing human intervention and seamlessly integrating into a CI/CD pipeline.

To achieve this goal, the following **objectives** were defined:

- Design a modular framework architecture that allows for the integration and orchestration of a variety of security analysis tools.
- 2. Develop a methodology for semantic analysis, contextsensitive vulnerability prioritization, and false-positive filtering using large language models (LLMs).
- 3. Substantiate the use of generative artificial intelligence within a procedural pipeline for the automatic construction of secure and functionally correct patches.
- 4. Create a step-by-step protocol for adopting and configuring the framework into the existing development process, including rules for human-system interaction (Human-in-the-Loop).
- Formulate objective KPIs to monitor overall performance of the framework, and to identify and assess the specific risks of generating AI code, and how these risks can be reduced.

The scientific novelty is a systematic pathway to self-healing code, achieved via a conceptual transition from an AI-assistant paradigm to an AI-agent paradigm. In the assistant regime, AI remains auxiliary, surfacing issues and proposing alternatives, while humans retain primacy over analysis and integration.

The proposed methodology specifies a framework in which AI operates as an autonomous security agent. Such an agent can execute the entire cycle end-to-end: triaging scanner outputs and suppressing noise; generating patches; validating them; and, in defined cases, automatically integrating remediations into the codebase. Human expertise is engaged not as obligatory labor but as a supervisory control at pre-specified, critical junctures.

Unlike extant works that often fixate on narrow sub-tasks (e.g., enhancing scanning or code generation alone), this methodology provides a holistic, end-to-end process. It fuses disparate technologies into a single system capable of proactively maintaining and continuously improving an

application's security posture, forming the practical substrate for self-healing code.

ARCHITECTURE OF THE AI-ASSISTED SECURITY FRAMEWORK

This chapter expounds the technical architecture of the proposed framework. It is modular by design, ensuring flexibility, scalability, and compatibility with diverse technology stacks. Each module fulfills a sharply defined function within a unified vulnerability-management pipeline.

Continuous Scanning Module: Orchestrating Analyzers

Timely and comprehensive identification of potential vulnerabilities is foundational to any security process. The continuous scanning module accomplishes this by integrating and orchestrating three core analyzers to provide multilayered protection (Guduru, 2020).

SAST (Static Application Security Testing). Analysis of source code and its artifacts without execution. Tools such as SAST tools like Semgrep or SonarQube effectively detect a broad spectrum of vulnerabilities via pattern analysis, data-flow inspection, and configuration checks. Within the framework, SAST scanning is the first line of defense and triggers on every commit to the version control system.

DAST (Dynamic Application Security Testing). Analysis of a running application, typically performed in a test or pre-release/staging environment. Tools such as OWASP ZAP emulate adversary requests and analyze system responses. Because DAST is resource-intensive and examines runtime behavior, it is usually run against release candidates (for example, once before a release) or on scheduled pre-release pipelines rather than on every commit. This approach surfaces runtime-emergent vulnerabilities while avoiding the high cost and instability of running full DAST scans on every push.

SCA (Software Composition Analysis). Scanning thirdparty libraries and project dependencies with tools such as Dependency-Check and Snyk that map project dependencies to public vulnerability databases such as the NVD to identify known vulnerabilities in open source dependencies.

Instead of running all analyses concurrently, the CI/CD pipeline uses orchestration to balance feedback latency and the depth of analysis, as shown in Figure 1.

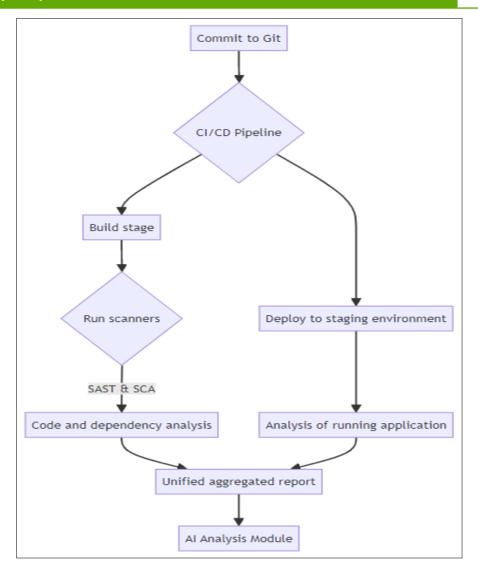


Figure 1. Scheme of integration and orchestration of SAST, DAST, and SCA scanners within the CI/CD pipeline

As shown, SAST and SCA run early, providing developers with immediate post-commit feedback. DAST is run after deployment into a test environment. Results from all scanners are aggregated into a single report that serves as input to the next module.

AI-Based Analysis and Prioritization Module

Raw outputs of automated scanners often contain substantial informational noise, especially false positives (Guduru, 2020). This module performs intelligent post-processing, transforming noise into actionable, context-relevant tasks.

A central tension motivates the design: both traditional SAST tools and LLMs (if used as primary detectors ab initio) can produce considerable false positives (Guduru, 2020). The framework resolves this via synergy. The LLM is not the primary detector; it functions as an intelligent post-processor and verifier for rule-based SAST findings.

Consider the workflow. A SAST scanner supplies a rule-grounded fact, a putative vulnerability at a specific code locus. The LLM receives this fact, along with broader context: the vulnerable snippet, surrounding functions/classes, developer comments, and possibly version-control metadata (e.g., author, last-modified date). Given this enriched semantic substrate, the LLM addresses whether a vulnerability exists, but is this SAST alert relevant and action-worthy in this specific software and business context. This operationalizes alarm triage, privileging effective noise suppression over absolute detection accuracy (Chang, 2016). The fusion of formal static analysis (SAST) with semantic comprehension (LLM) overcomes the limitations of either approach in isolation.

Post-filtration, the module assigns each confirmed vulnerability a context-aware criticality rating. Unlike vanilla CVSS scoring, technical severity in vacuo, the proposed model incorporates project- and architecture-specific factors. Grounded in an academic taxonomy of prioritization metrics, it evaluates multiple categories as shown in Table 1.

Table 1. Factors for contextual vulnerability prioritization (Le et al., 2022)

Metric factor	Description	Data source
Severity	CVSS score, Base severity rating of the vulnerability provided by	Scanner report, NVD
	the scanner.	
Vulnerability type (CWE)	Classification of the weakness (e.g., CWE-89: SQL Injection, CWE-79: XSS).	Scanner report
Exploitability	Presence of a public exploit: Is there a known and publicly available exploit code for this vulnerability?	Threat-intelligence databases
Attack complexity (AC)	How difficult is it for an attacker to reproduce the attack (are special conditions or privileges required)?	CVSS, LLM code analysis
Contextual factor, Component criticality	Would a business-critical module be affected (e.g., payment gateway, authentication service)?	Service map, code annotations
Contextual factor, External exposure	Is the vulnerable code reachable from the public network, or is it used only by internal services?	Network architecture analysis, Ingress configuration
Contextual factor, Development activity	How often is the file/module changed? High activity can increase regression risk.	Git commit history

The final criticality rating is computed as a weighted sum of these factors, with configurable weights based on an organization's security policy.

Patch (Fix) Generation Module

Once a vulnerability is confirmed and prioritized, the patch-generation module leverages generative AI to automatically construct code that remediates the issue. This process builds upon advances in Automated Program Repair (APR).

State-of-the-art research identifies several LLM-based APR paradigms (Zhang et al., 2024): model fine-tuning on domain-specific data; prompting; embedding LLMs in procedural pipelines; and employing agentic frameworks. For this framework, a hybrid approach combining a Procedural Pipeline with Analysis-Augmented Generation (AAG) is used. The LLM operates within a strict, deterministic algorithm, yet its prompts are dynamically enriched with precise technical artefacts produced earlier. This markedly elevates the semantic correctness and relevance of generated patches (Parasaram, 2024).

The process is as follows. The LLM receives exhaustive vulnerability data, its CWE type, precise code location (file, line), the vulnerable snippet, and contextual analysis results (e.g., that a function processes unvalidated user input). A detailed prompt is then formed, comprising not only the problem statement but facts distilled from static analysis (e.g., the causal data-flow trace). The prompt explicitly encodes project coding-style constraints and requires code that both eliminates the vulnerability and remains readable and maintainable. The LLM produces one or more candidate fixes. Built-in heuristics (e.g., minimal diff size, stylistic conformity) can auto-select the most promising candidate. Figure 2 illustrates the sequence.

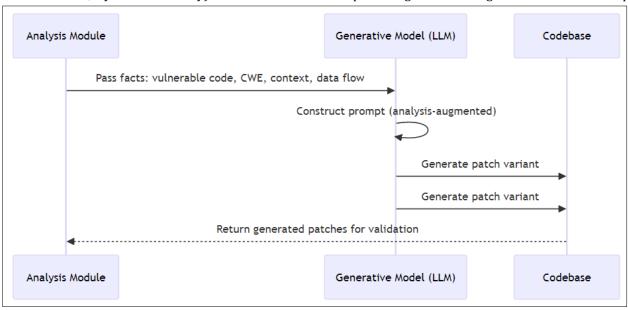


Figure 2. Sequence diagram for the patch generation process using an LLM enriched with data analysis

Validation and Integration Module

A generated patch cannot be integrated into the codebase absent rigorous verification of its correctness and safety. The standard approach of merely executing the existing regression test suite is necessary yet insufficient (Wang et al., 2021). The extant tests may fail to cover edge cases associated with the applied fix, and the patch itself may inadvertently introduce subtler defects. Consequently, the proposed framework implements a multilayer process of proactive verification rather than passive validation.

The proactive verification process, presented in Figure 3, comprises the following stages. The first step is to execute the whole corpus of existing unit and integration tests.

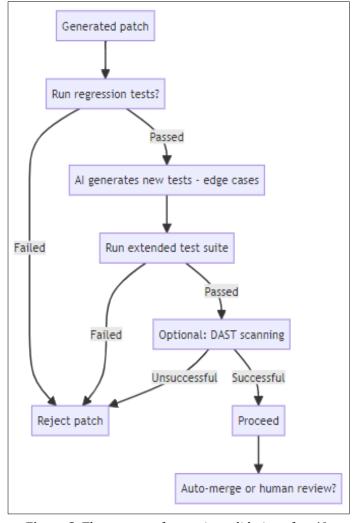


Figure 3. The process of proactive validation of an Algenerated patch

If any test fails, the patch is immediately rejected. Upon successful completion of regression, the system advances to a pivotal stage. A separate LLM instance (or the same model with a distinct objective) receives as input a description of the original vulnerability together with the generated patch. Its task is to produce a new, targeted test suite expressly designed to validate the fix and to probe boundary conditions. For example, if the patch remediates an SQL injection, the AI

can synthesize tests that submit inputs containing various special characters, quotes, and comments. The system executes an expanded test suite that includes both the original regression tests and the new AI-generated tests. For high-risk vulnerabilities, an additional targeted DAST scan focused on the modified component may be launched.

Only after all validation stages are passed successfully does the system initiate integration. The generated patch, the description of the remediated vulnerability, the full test reports, and LLM-augmented rationalization of the decision-making process are included in an automatically created pull request (or merge request), which if configured in the Human-in-the-Loop protocol (see previous chapter) can either automatically get merged to the main development branch or explicitly require human approval to do so.

This multilayer approach to software verification can help build confidence in the correctness of the automatically generated fix and help to prevent regression defects in software programs.

AUTHOR'S METHODOLOGY FOR FRAMEWORK DEPLOYMENT: A STEP-BY-STEP PROTOCOL

Ultimately, however, even the most elegant piece of technology requires a successful implementation within the existing processes. This chapter presents the methodology used throughout this book. It will guide the reader through the deployment and tuning of the AI-supported security architecture from beginning to end. This answers the question of how, and gives the study its practical value.

Stage 1: Integration with the Repository and CI/CD

The most important aspect is about the integration of the framework into the version control system (a VCS) and the continuous integration/continuous delivery (CI/CD) pipeline of the development environment.

It then interfaces with a version control software in order to detect actions, such as commits (pushes) to the repository and the creation of pull/merge requests. Webhooks in the VCS achieve this. Examples of VCS include GitHub, GitLab, Bitbucket, etc. An entry point, Endpoint, is created which is an API service that receives POST requests from webhooks. Then, you need to register the webhook with the VCS. This is typically achieved by creating a new webhook in the repository settings pointing to the URL of the deployed API service. The webhook can be configured to fire upon push events (to analyze commits on branches) and pull_request events (to inspect pull requests prior to merging). A secret token is also set up to verify that the request is from the VCS by signing the request. Figure 4 shows the ocode for this entire algorithm.

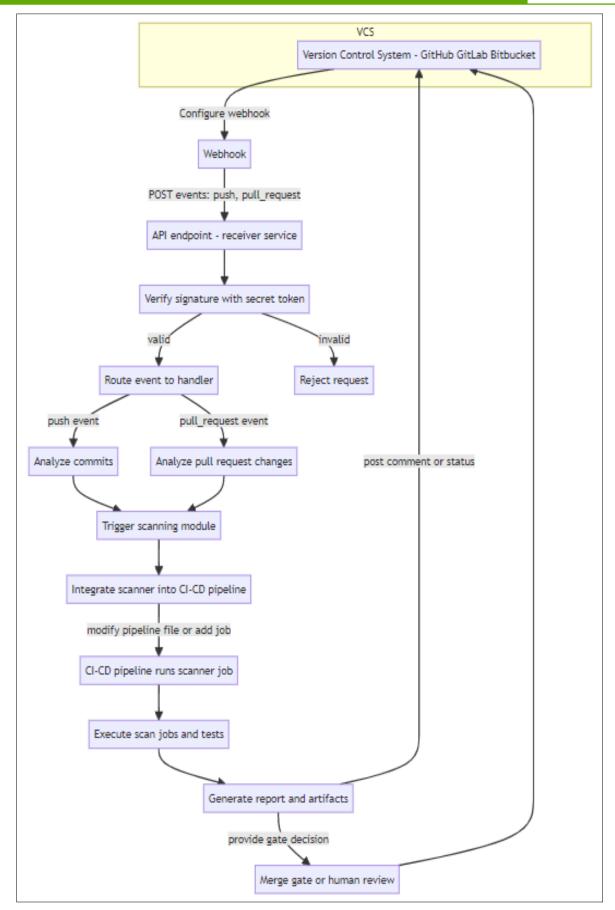


Figure 4. Algorithm for integration with a repository and CI/CD

Consider integration into the CI/CD pipeline. The framework modules, especially the scanning module, must be embedded into the existing CI/CD pipeline. This is done by modifying the pipeline configuration file, as illustrated in Figure 5.

```
stages:
    - build
    - test
    - security_scan
    - deploy_staging
    - dast_scan

sast_scan:
    stage: security_scan
    script:
        - /usr/bin/framework-scanner --type sast --output report.json
artifacts:
    paths: [report.json]

sca_scan:
    stage: security_scan
    script:
        - /usr/bin/framework-scanner --type sca --output report_sca.json
artifacts:
    paths: [report_sca.json]

dast_scan:
    stage: dast_scan
script:
        - /usr/bin/framework-scanner --type dast --url $STAGING_URL --output report_dast.json
needs: ["deploy_staging"]
```

Figure 5. Example of module integration for GitLab CI

In this example, separate jobs are defined for SAST and SCA scanning, executed at the security_scan stage. DAST scanning is launched later, after the application is deployed in the staging environment. The results (artifacts) of each scan are passed to the AI analysis module.

Stage 2: Configuration and Fine-Tuning of the AI Analyzer

The effectiveness of the AI analyzer depends directly on its ability to internalize the project's specific requirements. A boxed solution without additional tuning may yield suboptimal outcomes. It began with calibrating the prioritization model. The model uses weighted coefficients for each factor described in Table 1. The calibration process includes the following steps. Together with product owners and architects, a map of the application's key business components is compiled (e.g., auth-service, payment-gateway, user-profile-api). Weight coefficients are established for the prioritization factors. For example, in an e-commerce project, a vulnerability in the payment gateway should carry the most significant weight, even if its CVSS score is not critical. A vulnerability with a publicly available exploit should also receive elevated priority. After initial setup, the system operates in shadow mode for several sprints. The security team analyzes the AI-proposed priorities, compares them with expert judgment, and adjusts the weights if necessary. The entire process is shown in Figure 6.

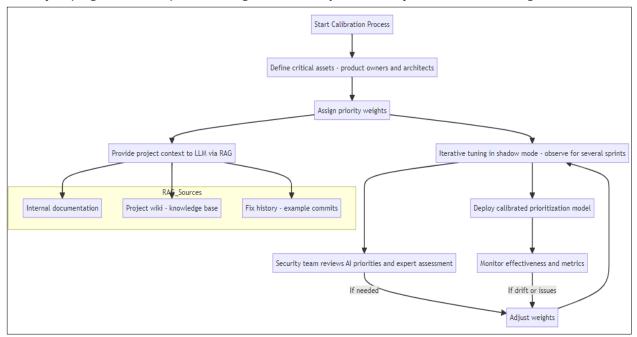


Figure 6. Algorithm for Configuration and Fine-Tuning of the AI Analyzer

Proactive Cybersecurity Methodology: An AI-Assisted Framework for Continuous Source-Code Vulnerability Analysis and Remediation

To improve the accuracy of analysis and patch generation, the LLM must be provided with additional project-specific context. This can be implemented via the use of the Retrieval-Augmented Generation (RAG) model, where the prompt is augmented with context such as coding standards, architectural diagrams, application programming interface (API) documentation, articles on common code errors and remediation patterns in the project, and fix commits for previously identified vulnerabilities that act as a gold standard for the LLM.

Stage 3: Human-in-the-Loop Protocol

The goal of the framework is to reduce the need for human labor, not to eliminate humans, and finding this right balance is critical for success. The Human-in-the-Loop protocol describes the way a human and the system are expected to interact. The interaction between the software and the human developer is determined by a decision matrix (Table 2) based on the computed vulnerability criticality rating and the component criticality rating. The decision matrix indicates the extent of control the system may exercise.

Table 2. Decision matrix for the Human-in-the-Loop protocol

Vulnerability criticality rating	Criticality of the affected component	System action	Rationale
Low		Fully autonomous: generate, validate, and automatically merge to the main branch.	Minimal risk to business processes. Maximizes developer time savings.
Medium	Non-critical	Semi-autonomous: generate, validate, and create a Pull Request for optional review. Auto-merge can be enabled after a timeout.	may require attention to maintain
Medium		Semi-autonomous: generate, validate, and create a Pull Request that requires review by one developer.	1 1
High / Critical	Any	Assistant mode: generate patch + detailed report, create a Pull Request that requires review by at least two developers (including a senior engineer or team lead).	incomplete fixes, or introduction

This matrix is configurable and should be adapted to the team's specific processes and culture.

Stage 4: Setting Up the Automated Testing Pipeline

The reliability of automatic fixes directly depends on the quality and completeness of test coverage. The automated testing pipeline must be prepared to interact with the proactive validation module. Begin by establishing a baseline regression test suite. Before the framework rollout, an audit of existing test coverage should be conducted. Minimum coverage levels should be met for: core business logic features (unit tests), interactions between the main system services or components (integration tests), and main user adventures covering registration, checkout, search, and view order (end-to-end tests).

For example, to integrate the validation module with a testing pipeline (such as Jenkins, GitLab Runner, GitHub Actions), the testing pipeline must perform the following steps.

Dynamic test intake. The CI/CD system must be able to accept AI-generated test code as input and execute it in the same environment as the main tests.

Result aggregation. The results of both static (regression) and dynamic (AI-generated) tests must be collected and transmitted back to the framework.

Pull Request lifecycle management. The CI/CD system should be able to update the PR's state. The PR must be automatically marked as failed if any tests fail. The PR must be blocked from being merged upon failure. Passing marks it automatically when all tests pass. The complete algorithm for this stage is shown in Figure 7.

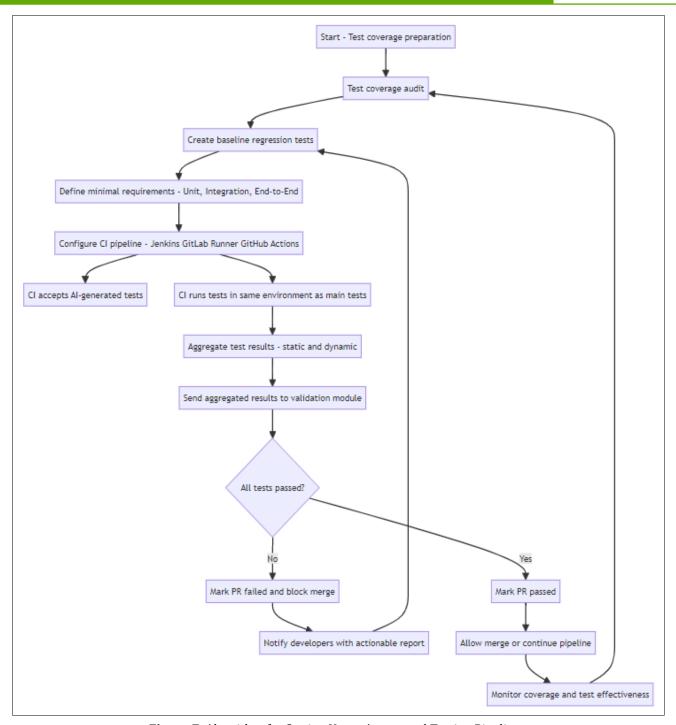


Figure 7. Algorithm for Setting Up an Automated Testing Pipeline

Following this step-by-step protocol allows you not only to install the framework but also to incorporate it into the development process and tailor it to the specific needs of a project and its risk profile.

EFFECTIVENESS EVALUATION AND RISK MANAGEMENT

The technologies of AI-based code generation have not yet been established in practice. For them to succeed, justifying their use, showing their value, and understanding their risks and limitations are necessary. This chapter presents metrics for assessing the framework, investigates its risk profile, and discusses ways to reduce risks in the context of software engineering.

Key Performance Indicators (KPI)

To measure the added value from the presence of the AI-enabled architecture and to determine its technical feasibility, appropriate KPIs will be defined to track progress, detect bottlenecks, and show business value to stakeholders. The main KPIs are provided in Table 3.

Table 3. Key performance indicators (KPIs) for evaluating the framework's performance

Metric	Description	Formula / Measurement method	Target value
MTTR (Mean Time to Remediate)	Average time from vulnerability detection to integration of its fix into the main branch. A key indicator of how quickly the team responds to threats.	(detection \rightarrow fix merged). Aggregate	_
Automation Rate (%)	Percentage of vulnerabilities fully remediated automatically (no manual code intervention) according to the Human-in-the-Loop protocol.	automatically / Total vulnerabilities)	
Developer Time Saved (person- hours)	Estimated developer time saved on analysis, remediation, and testing for vulnerabilities automated by the framework.	or from time tracking) compared to	l l
False Positive Reduction Rate (%)	Share of scanner (SAST/DAST) alerts that the AI analyzer correctly classifies as false positives and therefore do not require developer attention.	confirmed as false positives / Total	
Regression Rate (%)	Share of automatically generated patches that caused regressions (breaking existing functionality) detected during validation.	1 7	< 1%

Regular collection and analysis of these metrics enables not only evaluating the framework's current effectiveness but also making informed decisions about its further tuning and evolution.

Managing the Risks of AI-Generated Code

Still, the risks of having generative AI rewrite source code need to be managed. It is an oversimplification to say that AI-written code is of lower quality than other code. Research has shown that the defect and vulnerability profile of AI and human code is qualitatively different (Fu et al., 2023).

In contrast, AI-generated code was observed to be less complex than human-generated code. Still, with a higher prevalence of CWE-78 (OS Command Injection) and other classes of vulnerabilities, like CWE-798 (Use of Hard-coded Credentials), CWE-532 (Information Exposure Through Log Files), etc., Business logic and exceptions (CWE-754) and state management patterns were more popular in human-written code than in AI-generated code (Fu et al., 2023).

This divergence has direct practical implications. Standard code-review practices that prioritize the discovery of logical errors may be less effective for AI-generated patches. Accordingly, risk mitigation must be purposeful and tailored to the specificities of AI. It should include specialized rules for static analysis (SAST), i.e., tuning SAST tools to target those CWE classes most characteristic of LLM output. If a patch requires manual review, the checklist must include AI-specific items, such as checking for hard-coded secrets or unsafe system-command invocations. Automated checks should be introduced to block merges upon detection of explicit violations, such as the presence of secrets in code.

Table 4 presents a matrix of principal risks associated with the framework and the proposed mitigation methods.

Table 4. Matrix of risks and mitigation methods (Fu et al., 2023)

Risk	Probability	Impact	Mitigation method
AI introduces a new vulnerability	Medium	High	1. Multi-layer proactive validation (see Ch. 1.4).
(e.g., CWE-78)			2. Specialized SAST rules for generated changes.
			3. Targeted DAST scanning of the patched component.
Patch causes regression (breaks	Medium	Varies	1. Comprehensive regression test suite.
existing functionality)			2. AI-generation of additional validation tests for edge cases.

Suboptimal or non-performant	High	Low	1. Code review for patches touching performance-critical
fix			components.
			2. Monitor performance metrics in the staging environment.
Overreliance on automation	High	Medium	1. Clear and strict Human-in-the-Loop protocol.
			2. Regular developer training on framework behavior and
			limitations.
			3. Periodic audit of automatically merged changes.

Case Study (Hypothetical)

To depict how the framework works and its implications for the core performance measures, it is considered a hypothetical case.

A developer changes the reporting module, creating an SQL injection (CWE-89) vulnerability within the data filtering code of the module. The reporting module is not a critical service to business functions. Consider the framework's workflow.

- Commit and CI/CD kickoff (Time: 00:00): The developer pushes code to the repository. The CI/CD pipeline is invoked automatically.
- 2. Detection (Time: 00:01): In the security_scan stage, the SAST tool detects a potential SQL injection upon sending the report to the AI analysis module.
- 3. Analysis and prioritization (Time: 00:02): The LLM realizes that unregulated user input is concatenated into the SQL statement without sanitization and classifies it as a true positive. People prefer the term CWE-89 for the vulnerability type. The module is not considered critical given its medium rating.
- 4. Generate patch (Time: 00:04): The generation module receives the request and generates a patch to replace string concatenation with parameterized queries (prepared statements).
- 5. Validation (Time: 00:10): The validation module runs. All regression tests pass successfully. The AI then generates three new unit tests that verify handling of inputs containing single quotes, double quotes, and SQL comment characters. These tests also pass successfully.
- 6. Integration (Time: 00:12): The system automatically creates a Pull Request. According to the decision matrix (Table 2), for a medium-level vulnerability in a non-critical component, the PR is routed for optional review.
- 7. Review and merge (Time: 00:15): The developer is notified, spends a few minutes reviewing the evidently correct change, and approves the merge.

Now consider the comparative gain. With the AI framework, MTTR is 15 minutes, and developer time spent on review is 3–5 minutes; without the framework (traditional process), MTTR is 4–8 working hours (the vulnerability would be discovered either at the following manual review or during

scheduled scanning, then placed into the backlog, taken into work, fixed, and tested), and developer time is 1–2 hours for report analysis, problem localization, code authoring, test execution, and PR creation.

This case clearly demonstrates how the framework drastically reduces MTTR and minimizes developer distraction by routine security tasks, thereby proving its economic and operational effectiveness.

CONCLUSION

This study developed and methodologically substantiated a comprehensive proactive cybersecurity methodology based on an AI-assisted framework for continuous analysis and remediation of code vulnerabilities. The presented framework, comprising scanning, AI analysis, patch generation, and proactive validation modules, constitutes a systemic solution that bridges the fundamental gap between the velocity of modern CI/CD processes and the inertia of traditional security approaches.

The key conclusion is the validation of a paradigm in which artificial intelligence evolves from a passive assistant to an autonomous security agent. Through intelligent processing of scanner reports, context-dependent threat prioritization, automatic generation of semantically correct fixes, and multilayer verification of those fixes, the framework enables parity between development speed and the requisite level of software security. The step-by-step deployment protocol and the risk-management system ensure the methodology's practical applicability and reproducibility in real-world production settings. Thus, the AI-assisted framework can be regarded as a new standard of proactive cybersecurity within the DevOps ecosystem.

The practical significance of the proposed methodology extends beyond mere technological refinement. Its adoption enables organizations to achieve substantial business outcomes. The mean time to remediation (MTTR) reduces from days or hours to minutes because the entire vulnerability-management workflow and pipeline becomes automated, giving the opponent a smaller window of opportunity. Developer and security engineers spend manual effort analyzing false positives. These same engineers spend time prioritizing findings and writing boilerplate fixes for similar recurring issues, freeing up time to work on more complex and revolutionary solutions. This proactive patch validation, using a suite of AI-based targeted tests, lowers the risk of

Proactive Cybersecurity Methodology: An AI-Assisted Framework for Continuous Source-Code Vulnerability Analysis and Remediation

regressions and increases developer confidence, enabling true Shift Left Security by displacing reactive firefighting in production as the primary approach to preventing threats in the software development lifecycle.

Overall, the work discovers many new directions. It would be interesting to apply reinforcement learning to train the AI analyzer to prioritize patches and patch generation for new, unseen attack patterns based on developer feedback (e.g., PRs accepted and rejected by a developer) and the production environment (e.g., real security incidents).

Applying an analogous agentive approach to automate other labor-intensive code-quality tasks. This may include automatic refactoring to eliminate code smells, performance optimization based on profiling data, and improvement of code readability in accordance with project standards.

For multimodal LLMs trained on code and other system artifacts (e.g., architectural diagrams (C4, UML), tech specs, user stories, etc.), the advantage is system-wide awareness that enables system fixes to comply with system architecture, rather than band-aiding local issues and ignoring system architecture. Some speculate that continued progress in this area may lead to fully autonomous, self-correcting, and self-improving software development.

REFERENCES

- 1. Bodipudi, A. (2022). Integrating Vulnerability Scanning with Continuous Integration/Continuous Deployment (CI/CD) Pipelines. *European Journal of Advances in Engineering and Technology*, 9(2), 49–55. https://ejaet.com/PDF/9-2/EJAET-9-2-49-55.pdf
- 2. Chang, B.-Y. E. (2016). Cooperative Program Analysis: Tackling the Software Crisis by Bridging the Reasoning Gap between Users and Tools. The University of Colorado. https://plv.colorado.edu/bec/cv/chang-portfolio.pdf

- 3. Fu, Y., Liang, P., Tahir, A., Li, Z., Shahin, M., & Yu, J. (2023). Security Weaknesses of Copilot-Generated Code in GitHub. *Arxiv*. https://doi.org/10.48550/arXiv.2310.02059
- 4. Guduru, S. (2020). DevSecOps Automation: SAST/DAST Integration in GitLab CI/CD with Semgrep, OWASP ZAP, and Dependency-Check. *International Journal of Science and Research (IJSR)*, 9(12), 1893–1898. https://doi.org/10.21275/sr20127082903
- 5. Le, T. H. M., Chen, H., & Babar, M. A. (2022). A Survey on Data-driven Software Vulnerability Assessment and Prioritization. *ACM Computing Surveys*, *55*(5), 1–39. https://doi.org/10.1145/3529757
- 6. Parasaram, N. (2024). Synergising Program Analysis and Machine Learning for Program Repair Nikhil Parasaram [Dissertation]. https://discovery.ucl.ac.uk/id/eprint/10198758/2/Nikhil_s_Thesis__Corrections_-5. pdf
- 7. Singh, B. (2019). Shifting Security Left: Integrating DevSecOps into Agile Software Development Lifecycles. *The Research Journal (TRJ)*, *5*(1), 27–35. https://nebula.wsimg.com/632d1b60e36517a3c0cd0af4693109b3?AccessKeyId=809C1E9E538F4C38BEAB&disposition=0&alloworigin=1
- 8. Wang, S., Wen, M., Lin, B., Wu, H., Qin, Y., Zou, D., Mao, X., & Jin, H. (2021). Automated patch correctness assessment. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, 968–980. https://doi.org/10.1145/3324884.3416590
- Zhang, Q., Fang, C., Xie, Y., Ma, Y., Sun, W., & Yang, Y. (2024).
 A Systematic Literature Review on Large Language Models for Automated Program Repair. *Arxiv*. https://doi.org/10.48550/arxiv.2405.01466

Citation: Kateryna Kuznetsova, "Proactive Cybersecurity Methodology: An AI-Assisted Framework for Continuous Source-Code Vulnerability Analysis and Remediation", Universal Library of Innovative Research and Studies, 2024; 1(2): 77-88. DOI: https://doi.org/10.70315/uloap.ulirs.2024.0102010.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.