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The article presents a comprehensive analysis of the principles and architectures of detection engineering as a
methodological foundation for building modern systems for identifying and preventing cyberattacks. The study employs
an interdisciplinary approach that integrates machine learning, provenance data graph analysis, and the MITRE ATT&CK
taxonomy. The analysis is based on recent international publications reflecting the shift from signature-based methods to
context-oriented models capable of adaptive self-learning and feedback with monitoring centers. The key components of
the detection engineering cycle are examined, including data standardization under the STIX 2.1 format, correlation of
system calls with MITRE tactics, the use of directed graphs for behavioral modeling, and the implementation of adaptive
thresholds in classification algorithms. Particular attention is given to identifying implementation barriers related
to log heterogeneity, lack of realistic datasets, and the dependence of models on fixed metrics. The novelty of the study
lies in formulating the principles of building a detection engineering pipeline that unites machine learning, behavioral
analytics, and organizational mechanisms of SOC within a single adaptive security framework. The practical significance
of the research consists in justifying approaches that reduce false positives, improve the interpretability of detections, and
enhance system resilience to APT-class attacks. The article will be useful for researchers and practitioners in cybersecurity,
developers of analytical platforms, and specialists involved in the design of monitoring and incident response centers.
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INTRODUCTION

Modern cybersecurity systems are undergoing profound
changes driven by the increasing complexity of corporate
infrastructures, the proliferation of cloud services, and the
growing number of distributed components. Against this
backdrop, traditional attack detection systems are gradually
losing their effectiveness. They scale poorly, fail to provide a
holistic context, and generate a high level of false positives
[2]. The scalability of data, the heterogeneity of logs, and the
rapid evolution of attacker tactics are leading to a decrease
in the accuracy and speed of incident response. Under these
conditions, it is necessary to transition from disparate
monitoring tools to holistic detection engineering—a system
based on standardized threat models, multi-layered data
correlation, and transparent decision-making principles.

The relevance of this research is determined by the fact
that existing intrusion detection systems are unable to
effectively cope with the growing volumes of telemetry
and the complexity of modern cyberattacks, including
targeted campaigns and supply chain attacks. The problem
is exacerbated by the lack of a unified ontological framework
that integrates data from different levels, from operating
system kernel events to MITRE ATT&CK tactics. As a result,
analysts face information overload, and corporate SOCs

face a loss of stability and explainability of detections [5].
Ensuring reliable, reproducible, and contextually meaningful
detection is becoming a key factor in the effectiveness of the
entire defense system.

According to international recommendations from NIST
SP 800-94, the MITRE D3FEND initiative, and analytical
forecasts from Gartner Cybersecurity Trends 2024, global
cybersecurity practice is shifting from reactive monitoring
to engineering-oriented detection methods that provide
adaptive learning and contextual threat correlation.

The problem lies in the fact that most existing approaches
still focus on technical aspects—thresholds, signatures,
machine learning algorithms—while ignoring the
methodology for building a unified detection engineering
cycle: from data normalization to the visualization of cause-
and-effect relationships. Principles are needed that can unite
machine learning, MITRE taxonomies, and graph-based data
provenance models into a coherent analytical loop.

The research hypothesis is that the integration of machine
learning and data provenance analysis methods into a
single analytical loop allows for an increase in the accuracy,
reproducibility, and interpretability of threat detection
processes compared to traditional signature-based and
threshold-based approaches.
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The purpose of this study is to analyze the fundamental
principles for building an effective detection engineering
system that combines machine learning models, the
MITRE ATT&CK taxonomy, and intrusion detection system
architectures based on data provenance analysis; to
identify the key mechanisms that increase the accuracy,
explainability, and resilience of detection; and to determine
the development directions for detection engineering as a
methodological basis for modern incident monitoring and
response centers.

MATERIALS AND METHODS

The methodological foundation of this study is formed at
the intersection of cyber threat analysis theory, detection
engineering, and applied methods for building intelligent
monitoring systems. The research is based on modern works
that examine various approaches to integrating machine
learning, MITRE ATT&CK taxonomies, and graph-based data
provenance models into a single analytical loop.

The study by Disha R. A. [1] conducted a comparative
analysis of machine learning models for attack detection
systems, showing that the use of a Gini Impurity-based
Weighted Random Forest (GIWRF) method provides the
highest classification accuracy while reducing the number of
features. The work by Georgiadou A. [2] proposed a cultural-
organizational model for assessing MITRE ATT&CK risks,
linking the maturity of a corporate security culture with the
completeness of implemented protective measures, which
expanded the methodology for evaluating the effectiveness
of monitoring centers. The study by Gonzalez-Granadillo G.
[3] systematized the development trends of SIEM platforms
in critical infrastructures, identifying key requirements for
the standardization of data sources and the automation of
event correlation.

The work by Khraisat A. [4] provided a review of methods
and datasets for building attack detection systems, proposing
a classification of IDS technologies based on architecture
and the type of algorithm used. The study by Pahlevan M.
[5] developed a model for the secure exchange of threat
intelligence based on blockchain technology and the TAXII
2.1 standard, ensuring integrity and trust in the transmission
of information between participants. The work by Rosso M.
[6] presented the SAIBERSOC methodology, describing the
operational structure of security monitoring centers and the
role of detection engineering in shaping their technological
maturity.

The study by Sacher-Boldewin D. [7] revealed the intelligent
lifecycle of active cyber defense processes, including the
phases of analysis, learning, and adaptation of detection
models. The work by Son V. N. [8] demonstrated the
application of the MITRE ATT&CK taxonomy for describing
malware behavior, which allowed for the formalization of
attack patterns at the system event level. The study by Xiong
W. [9] developed a methodology for modeling cyber threats
based on the MITRE ATT&CK Enterprise matrix, enabling

the mapping of attack scenarios to corporate system
vulnerabilities. A significant contribution to the development
of the theoretical basis was made by the study of Zipperle M.
[10], which systematized approaches to building detection
systems based on data provenance analysis (PIDS), defining
their architectural modules and scalability problems.

Thus, the methodological strategy of the research is based
on the synthesis of principles from machine learning, MITRE
ATT&CK taxonomies, data provenance analysis systems, and
security monitoring center architectures. This approach has
made it possible to identify key areas for improving detection
engineering—data unification to ensure the compatibility
of telemetry sources, contextual modeling of behavior
to enhance the explainability of detections and restore
cause-and-effect relationships, and the implementation of
adaptive metrics that provide for the dynamic adjustment of
thresholds and the resilience of analytical models to changes
in the threat structure.

RESULTS

The analysis conducted showed that modern detection
system architectures are evolving within two complementary
approaches, based on machine learning models and MITRE
ATT&CK taxonomies. The first group is aimed at improving
classification accuracy and reducing the number of false
positives through statistical analysis and feature selection,
while the second is focused on enhancing explainability and
contextual accuracy by mapping observed events to attacker
tactics and techniques. The combination of these areas
forms the basis for building integrated detection engineering
systems that unite the data level and the threat semantics level.

The study by Disha R. A. [1] proposed the Gini Impurity-based
Weighted Random Forest (GIWRF) method, which optimizes
the performance of attack detection models. On the UNSW-
NB15 and TON_IoT datasets, the authors showed that GIWRF
allows for the reduction of the number of features to 20 and
10, respectively, without loss of accuracy. The best result was
achieved using a Decision Tree classifier, which provided an
F1 score of 0.98 and a reduction in the false-positive rate.
This approach demonstrated the effectiveness of weighted
ensembles with a limited number of relevant features and
emphasized the importance of interpretability as a key factor
in detection engineering.

The study by Son V. N. [8] proposed an architecture based
on the integration of Sysmon system events with MITRE
ATT&CK tactics, including T1055 (Process Injection) and
T1547 (Boot or Logon Autostart Execution). To describe
the relationships between events and techniques, Sigma
rules were used, providing standardized data correlation
at the level of security monitoring centers. This allowed for
a shift from recording individual anomalies to a contextual
analysis of attacker behavior and reduced the detection
time for multi-stage attacks. Table 1 examines the difference
between architectures based on machine learning methods
and systems implementing the MITRE taxonomic approach.
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Table 1. Comparison of detection models in ML- and MITRE-oriented systems (Compiled by the author based on sources:

[1,3,8])

Parameter GIWRF Sysmon + MITRE

Data type Feature vectors (UNSW-NB15, TON_IoT) System event logs (ETW / Sysmon)

Method Weighted Random Forest Rule-based correlation with MITRE ATT&CK
Objective Reduce false-positive rate and improve F1-score Correlate process behavior with ATT&CK TTPs
Best result F1 =0.98 (Decision Tree) Early detection of T1055 and T1547 techniques

An analysis of the data in Table 1 shows that models based
on machine learning provide high classification accuracy
when high-quality datasets are available but are limited
in the explainability of their results. In contrast, MITRE-
oriented solutions allow for the detailed analysis of attacker
behavioral patterns, increasing the transparency of the
analysis, but require manual rule updates and depend on the
completeness of the knowledge base.

The combination of these approaches in a single detection
engineering loop is seen as a promising direction, capable
of combining the metric efficiency of ML models with the
semantic accuracy of MITRE taxonomies. As noted in the
studies by Georgiadou A. [2] and Zipperle M. [10], hybrid
architectures allow for the formation of cause-and-effect
relationships between events and adversary tactics, thereby
increasing the adaptability and resilience of detection
systems to new threat scenarios.

The development of Provenance-based Intrusion Detection
Systems (PIDS) has become a logical stage in the evolution of

detection engineering in response to the growing complexity
of attacks and volumes of telemetry [6]. Unlike classic
signature-based solutions, PIDS capture the cause-and-effect
relationships between processes, files, and network objects,
enabling the reconstruction of the event timeline and the
analytical traceability of an attacker’s actions.

The study by Xiong, W. [9] systematized scientific works
and proposed a structural model of PIDS that includes
four interconnected modules—data collection, graph
summarization, intrusion detection, and benchmark
datasets. This typology made it possible to identify the
bottlenecks of each lifecycle stage and to reveal the systemic
limitations hindering practical implementation. For instance,
the volume of data collected at the operating system kernel
level in modern experiments reaches several terabytes,
which causes an overload of computing nodes and reduces
the efficiency of real-time processing. Table 2 examines the
distribution of existing solutions by architectural modules
and the main scalability problems.

Table 2. Main PIDS approaches by architectural module (Compiled by the author based on sources: [4, 9, 10])

Module Example systems

Key objective

Scalability issue

Data collection CamFlow, Sysmon, Provmon

Collect provenance data from OS kernel

High system load (>40%)

Graph summarization |NodeMerge, LogApprox

Compress event graphs (DAG)

Semantic loss

Intrusion detection DeepLog, ProvDetector

Detect APT anomalies

Threshold dependency

Benchmark datasets |[DARPA TC E3, LANL

Replicate real-world attack traces

Insufficient documentation

As can be seen from the data in Table 2, the main load falls
on the data collection module, which is implemented using
low-level monitoring tools that provide maximum event
completeness but at the same time create a load on system
resources. Following this, the graph summarization module
addresses the task of reducing the size of the directed acyclic
graph, but methods like NodeMerge and LogApprox lead to a
loss of semantics in the relationships between objects [7].

The intrusion detection module uses machine learning
algorithms (e.g, DeepLog, ProvDetector) to identify
anomalies in process behavior. However, such approaches
remain dependent on rigidly defined thresholds, which limits
their adaptation to new attack scenarios. Similar conclusions
were reached in the study by Disha R. A. [1], which showed
that even with high classification accuracy (F1 = 0.98), the
effectiveness of the models depends on the correct selection
of features and training conditions.

Furthermore, according to the observations of Georgiadou
A. [2], the risk of errors increases in the absence of

standardized mechanisms for data correlation, which makes
the use of MITRE ATT&CK taxonomies as a normalization
layer important. The study by Gonzalez-Granadillo G. [3]
emphasizes that such integration is possible only in the
presence of unified event log formats and centralized SIEM
platforms that ensure data compatibility between sources.
The benchmark datasets module, as noted by Rosso M. [6],
plays a key role in evaluating the correctness of detectors.
However, even test environments such as DARPA TC E3
and LANL are characterized by limited documentation and
insufficient realism, which is confirmed in the analytical
review by Zipperle M. [10]. This hinders the replication of
attacks and the verification of the results obtained.

Consequently, the evolution of PIDS architectures reveals
a contradiction between the depth of analytics and the
computational stability of the systems. On the one hand, the
high detail of provenance data allows for the reconstruction
of complex attack scenarios; on the other hand, it causes
problems of scalability and loss of semantics during graph
compression. The comparative-analytical meta-analysis
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of publications has shown that combining the advantages
of both approaches is possible by forming hybrid models
that unite graph analysis with the principles of detection
engineering. As shown in the works of Xiong W. [9] and
Sacher-Boldewin D. [7], such models distribute functions
between levels: machine learning algorithms are responsible
for event prioritization, while MITRE ATT&CK taxonomies
handle the contextualization of adversary behavior, ensuring
a balance between analytical depth and computational
efficiency.

DISCUSSION

Detection engineering as an independent direction in
cybersecurity is formed at the intersection of data analytics,
system monitoring, and organizational risk management.
Based on an analysis of the presented research, a set of
interconnected principles can be identified that define a
holistic architecture for a Detection Engineering System and
ensure its reproducibility in a highly critical infrastructure.

The study by Son V. N. [8] shows that the effectiveness of
detection systems is directly dependent on the ability to
combine low-level kernel events with high-level MITRE
ATT&CK tactics. This correlation between Sysmon processes
and TTPs allows for the detection of anomalies at the early
stages of the attack lifecycle, ensuring the continuity of the
analytical context from the system call level to the description
of the attacker’s objectives. An equally important area of

development is the standardization of data representation.
The study by Georgiadou A. [2] proposes a model for unifying
risks and cultural factors based on the STIX 2.1 format,
which allows for the creation of a unified compatibility
space between incident analysis systems. This unification
facilitates the exchange of information between participants
in the response chain and makes a quantitative assessment
of the maturity of monitoring centers (SOCs) possible. As
shown in the study by Zipperle M. [10], the contextualization
of data through provenance graphs enables a shift from
isolated events to the reconstruction of complete attack
scenarios. The use of directed acyclic graphs (DAGs) makes
it possible to track the relationships between processes and
files, minimize the false-positive rate to 0.1%, and obtain an
explainable structure of the attacker’s behavior.

The interaction between the analytical and computational
levels of the systems is realized through feedback mechanisms.
The study by Disha R. A. [1] shows that the application of the
GIWRF method in combination with decision trees forms a
closed-loop model update cycle, in which new data coming
from the SOC automatically adjusts the weight coefficients
of the features. This ensures an increase in accuracy (F1
score) by 15-20% and resilience to APT-type attacks, which
are characterized by a multi-layered structure and high
behavioral variability. Table 3 presents the generalized
principles for building a Detection Engineering System and
their implementation in specific studies.

Table 3. Fundamental principles of Detection Engineering System (Compiled by the author based on sources: [1, 2, 8, 10])

Principle Implementation

Effect

Multilayer correlation Sysmon < MITRE TTP

Early-stage detection

Data standardization

STIX 2.1 + Cultural Matrix

SOC maturity assessment

Behavioral contextualization

Provenance DAG analysis

FPR reduction to 0.1 %

ML integration GIWRF + DT Pipeline

F1 increase by 15-20 %

The systematization presented in Table 3 allows us to
consider the detection engineering system as a multi-
layered ecosystem in which telemetry sources, machine
learning models, and MITRE ATT&CK taxonomies form a
single analytical loop. Multi-level correlation provides cause-
and-effect links between processes and attack techniques.
Data standardization ensures the reproducibility and
compatibility of analytical models. The graph structures
of PIDS create a context for interpreting behavior, and the
interaction between the SOC and ML models ensures the
system’s adaptability to the dynamics of threats.

Consequently, the fundamental principles of detection
engineering form the methodological basis for building
resilient and explainable defense systems capable of
identifying incidents and predicting the development of
attack scenarios. This approach sets a new standard in the
organization of analytical processes in cybersecurity, where
the priority shifts from reactive response to the predictive
identification of threats within a unified loop of data,
behavior, and context.

Modern detection engineering faces a number of
fundamental limitations that hinder the transition from
experimental models to industrial solutions. As shown in the
study by Sacher-Boldewin D. [7], the main obstacle lies in
the heterogeneity of event logs, the lack of unified formats,
and the incompleteness of metadata, which reduces the
reliability of provenance graphs and limits the scalability
of analysis. In practice, this is evident, for example, when
integrating Sysmon telemetry with corporate EDR platforms
(CrowdStrike, Splunk ES): the difference in event formats
and field schemas leads to a partial loss of context and a
disruption of the links between processes during correlation.
Even with the active use of low-level monitoring systems,
the problem of overload persists—telemetry volumes reach
several terabytes, and data normalization requires manual
filtering and additional semantic processing. Another
significant challenge is the deficit of realistic datasets. As
noted by Khraisat A. [4], existing collections—DARPA TC E3
and LANL—do not reflect the current level of threats, contain
incomplete descriptions of attacks, and do not account for
the complex scenarios characteristic of targeted campaigns.
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As a result, machine learning algorithms are trained on
incomplete or unbalanced samples, which leads to overfitting
and an increase in the false-positive rate.

A special role is played by the problem of threshold
dependency, which is characteristic of detectors that use
fixed metric values. The study by Disha R. A. [1] shows that
even models with high classification accuracy, built on the
GIWRF method, demonstrate a decrease in quality when the
distribution of input data changes. The absence of adaptive
thresholds leads to the system becoming unstable against
new types of attacks, especially in a dynamically changing
infrastructure.

At the same time, the prospects for the further development
of detection engineering are associated with the automation
and integration of heterogeneous approaches. The study
by Son V. N. [8] shows that the correlation of Sysmon
logs with MITRE ATT&CK techniques can be automated
by constructing correlation rules formed on the basis of
provenance graphs and statistical models. This approach
allows for the description of attacker behavior at the level of
individual events, tactics, and procedures, creating a basis for
the adaptive generation of protection rules. Similarly, Disha
R. A. [1] considers the possibility of forming a feedback loop
between monitoring systems and machine learning models.
In this case, the SOC becomes an active source of data for
self-learning, and accuracy metrics serve as parameters for
tuning the algorithms. In the long term, this will allow for
the construction of a continuous loop for updating detection
rules, where each new attack automatically strengthens the
system’s resilience.

Consequently, the key direction of development is the
construction of a detection engineering pipeline—a holistic
analytical chain that combines telemetry collection, behavior
modeling, and feedback with operational centers. This
structure will allow for the implementation of the adaptive
threshold principle, ensuring a balance between the system'’s
sensitivity and stability.

The practical implementation of such an approach is already
emerging in the integration of open-source tools—Sigma,
OpenCTI, TheHive—with industrial SIEM platforms (Elastic,
Splunk, IBM QRadar), which creates a basis for the automation
of event correlation and the generation of detection rules
in real time. The automatic updating of ATT&CK content
and the exchange of indicators via STIX/TAXII allow for the
formation of self-learning defense loops, where each new
attack strengthens the analytical model.

In the long term, it is this approach that will become the
methodological standard for intelligent systems for detecting
and neutralizing attacks, uniting machine learning, graph
analytics, and MITRE ATT&CK standards in a single research
and practical loop.

CONCLUSION

The conducted research has confirmed that detection

engineering is not a collection of disparate analysis methods
but a holistic system that forms a new architecture for
ensuring cybersecurity. The synthesis of machine learning,
graph-based data provenance analysis, and MITRE ATT&CK
taxonomies allows for a transition from a reactive response
to incidents to the proactive prevention of attacks through
a contextual understanding of adversary behavior and the
interconnections between events.

It has been identified that the effectiveness of a detection
engineering system is determined by the degree of
standardization of input data, the correctness of the
correlation between the system and behavioral levels, and
the presence of a feedback loop with monitoring centers.
The formation of adaptive thresholds, updated based on the
actual results of SOC operations, ensures the resilience of
algorithms to changes in the threat structure and allows for
an increase in the accuracy and explainability of decisions.

The practical significance of this approach lies in the
creation of a closed-loop analytical processing cycle, where
telemetry, machine learning models, and the MITRE context
are combined in a single risk management system. Such
integration reduces the rate of false positives, accelerates the
response to attacks, and increases the maturity of detection
processes across the organization.

The prospects for further research are associated with the
development of a detection engineering pipeline—a holistic
analytical chain that includes the automatic generation of
rules, the adaptive updating of models, and integration with
the response infrastructure. The implementation of such
an approach will allow for a transition to the intelligent
automation of defense systems, where each new attack
becomes a source of learning, and the system itself becomes
a self-configuring mechanism for ensuring cyber resilience.
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