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The article presents a comprehensive analysis of the principles and architectures of detection engineering as a 
methodological foundation for building modern systems for identifying and preventing cyberattacks. The study employs 
an interdisciplinary approach that integrates machine learning, provenance data graph analysis, and the MITRE ATT&CK 
taxonomy. The analysis is based on recent international publications reflecting the shift from signature-based methods to 
context-oriented models capable of adaptive self-learning and feedback with monitoring centers. The key components of 
the detection engineering cycle are examined, including data standardization under the STIX 2.1 format, correlation of 
system calls with MITRE tactics, the use of directed graphs for behavioral modeling, and the implementation of adaptive 
thresholds in classification algorithms. Particular attention is given to identifying implementation barriers related 
to log heterogeneity, lack of realistic datasets, and the dependence of models on fixed metrics. The novelty of the study 
lies in formulating the principles of building a detection engineering pipeline that unites machine learning, behavioral 
analytics, and organizational mechanisms of SOC within a single adaptive security framework. The practical significance 
of the research consists in justifying approaches that reduce false positives, improve the interpretability of detections, and 
enhance system resilience to APT-class attacks. The article will be useful for researchers and practitioners in cybersecurity, 
developers of analytical platforms, and specialists involved in the design of monitoring and incident response centers.
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Introduction
Modern cybersecurity systems are undergoing profound 
changes driven by the increasing complexity of corporate 
infrastructures, the proliferation of cloud services, and the 
growing number of distributed components. Against this 
backdrop, traditional attack detection systems are gradually 
losing their effectiveness. They scale poorly, fail to provide a 
holistic context, and generate a high level of false positives 
[2]. The scalability of data, the heterogeneity of logs, and the 
rapid evolution of attacker tactics are leading to a decrease 
in the accuracy and speed of incident response. Under these 
conditions, it is necessary to transition from disparate 
monitoring tools to holistic detection engineering—a system 
based on standardized threat models, multi-layered data 
correlation, and transparent decision-making principles.

The relevance of this research is determined by the fact 
that existing intrusion detection systems are unable to 
effectively cope with the growing volumes of telemetry 
and the complexity of modern cyberattacks, including 
targeted campaigns and supply chain attacks. The problem 
is exacerbated by the lack of a unified ontological framework 
that integrates data from different levels, from operating 
system kernel events to MITRE ATT&CK tactics. As a result, 
analysts face information overload, and corporate SOCs 

face a loss of stability and explainability of detections [5]. 
Ensuring reliable, reproducible, and contextually meaningful 
detection is becoming a key factor in the effectiveness of the 
entire defense system.

According to international recommendations from NIST 
SP 800-94, the MITRE D3FEND initiative, and analytical 
forecasts from Gartner Cybersecurity Trends 2024, global 
cybersecurity practice is shifting from reactive monitoring 
to engineering-oriented detection methods that provide 
adaptive learning and contextual threat correlation.

The problem lies in the fact that most existing approaches 
still focus on technical aspects—thresholds, signatures, 
machine learning algorithms—while ignoring the 
methodology for building a unified detection engineering 
cycle: from data normalization to the visualization of cause-
and-effect relationships. Principles are needed that can unite 
machine learning, MITRE taxonomies, and graph-based data 
provenance models into a coherent analytical loop.

The research hypothesis is that the integration of machine 
learning and data provenance analysis methods into a 
single analytical loop allows for an increase in the accuracy, 
reproducibility, and interpretability of threat detection 
processes compared to traditional signature-based and 
threshold-based approaches.
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The purpose of this study is to analyze the fundamental 
principles for building an effective detection engineering 
system that combines machine learning models, the 
MITRE ATT&CK taxonomy, and intrusion detection system 
architectures based on data provenance analysis; to 
identify the key mechanisms that increase the accuracy, 
explainability, and resilience of detection; and to determine 
the development directions for detection engineering as a 
methodological basis for modern incident monitoring and 
response centers.

Materials and Methods
The methodological foundation of this study is formed at 
the intersection of cyber threat analysis theory, detection 
engineering, and applied methods for building intelligent 
monitoring systems. The research is based on modern works 
that examine various approaches to integrating machine 
learning, MITRE ATT&CK taxonomies, and graph-based data 
provenance models into a single analytical loop.

The study by Disha R. A. [1] conducted a comparative 
analysis of machine learning models for attack detection 
systems, showing that the use of a Gini Impurity-based 
Weighted Random Forest (GIWRF) method provides the 
highest classification accuracy while reducing the number of 
features. The work by Georgiadou A. [2] proposed a cultural-
organizational model for assessing MITRE ATT&CK risks, 
linking the maturity of a corporate security culture with the 
completeness of implemented protective measures, which 
expanded the methodology for evaluating the effectiveness 
of monitoring centers. The study by González-Granadillo G. 
[3] systematized the development trends of SIEM platforms 
in critical infrastructures, identifying key requirements for 
the standardization of data sources and the automation of 
event correlation.

The work by Khraisat A. [4] provided a review of methods 
and datasets for building attack detection systems, proposing 
a classification of IDS technologies based on architecture 
and the type of algorithm used. The study by Pahlevan M. 
[5] developed a model for the secure exchange of threat 
intelligence based on blockchain technology and the TAXII 
2.1 standard, ensuring integrity and trust in the transmission 
of information between participants. The work by Rosso M. 
[6] presented the SAIBERSOC methodology, describing the 
operational structure of security monitoring centers and the 
role of detection engineering in shaping their technological 
maturity.

The study by Sacher-Boldewin D. [7] revealed the intelligent 
lifecycle of active cyber defense processes, including the 
phases of analysis, learning, and adaptation of detection 
models. The work by Son V. N. [8] demonstrated the 
application of the MITRE ATT&CK taxonomy for describing 
malware behavior, which allowed for the formalization of 
attack patterns at the system event level. The study by Xiong 
W. [9] developed a methodology for modeling cyber threats 
based on the MITRE ATT&CK Enterprise matrix, enabling 

the mapping of attack scenarios to corporate system 
vulnerabilities. A significant contribution to the development 
of the theoretical basis was made by the study of Zipperle M. 
[10], which systematized approaches to building detection 
systems based on data provenance analysis (PIDS), defining 
their architectural modules and scalability problems.

Thus, the methodological strategy of the research is based 
on the synthesis of principles from machine learning, MITRE 
ATT&CK taxonomies, data provenance analysis systems, and 
security monitoring center architectures. This approach has 
made it possible to identify key areas for improving detection 
engineering—data unification to ensure the compatibility 
of telemetry sources, contextual modeling of behavior 
to enhance the explainability of detections and restore 
cause-and-effect relationships, and the implementation of 
adaptive metrics that provide for the dynamic adjustment of 
thresholds and the resilience of analytical models to changes 
in the threat structure.

Results
The analysis conducted showed that modern detection 
system architectures are evolving within two complementary 
approaches, based on machine learning models and MITRE 
ATT&CK taxonomies. The first group is aimed at improving 
classification accuracy and reducing the number of false 
positives through statistical analysis and feature selection, 
while the second is focused on enhancing explainability and 
contextual accuracy by mapping observed events to attacker 
tactics and techniques. The combination of these areas 
forms the basis for building integrated detection engineering 
systems that unite the data level and the threat semantics level.

The study by Disha R. A. [1] proposed the Gini Impurity-based 
Weighted Random Forest (GIWRF) method, which optimizes 
the performance of attack detection models. On the UNSW-
NB15 and TON_IoT datasets, the authors showed that GIWRF 
allows for the reduction of the number of features to 20 and 
10, respectively, without loss of accuracy. The best result was 
achieved using a Decision Tree classifier, which provided an 
F1 score of 0.98 and a reduction in the false-positive rate. 
This approach demonstrated the effectiveness of weighted 
ensembles with a limited number of relevant features and 
emphasized the importance of interpretability as a key factor 
in detection engineering.

The study by Son V. N. [8] proposed an architecture based 
on the integration of Sysmon system events with MITRE 
ATT&CK tactics, including T1055 (Process Injection) and 
T1547 (Boot or Logon Autostart Execution). To describe 
the relationships between events and techniques, Sigma 
rules were used, providing standardized data correlation 
at the level of security monitoring centers. This allowed for 
a shift from recording individual anomalies to a contextual 
analysis of attacker behavior and reduced the detection 
time for multi-stage attacks. Table 1 examines the difference 
between architectures based on machine learning methods 
and systems implementing the MITRE taxonomic approach.
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Table 1. Comparison of detection models in ML- and MITRE-oriented systems (Compiled by the author based on sources: 
[1, 3, 8])

Parameter GIWRF Sysmon + MITRE
Data type Feature vectors (UNSW-NB15, TON_IoT) System event logs (ETW / Sysmon)
Method Weighted Random Forest Rule-based correlation with MITRE ATT&CK
Objective Reduce false-positive rate and improve F1-score Correlate process behavior with ATT&CK TTPs
Best result F1 = 0.98 (Decision Tree) Early detection of T1055 and T1547 techniques

An analysis of the data in Table 1 shows that models based 
on machine learning provide high classification accuracy 
when high-quality datasets are available but are limited 
in the explainability of their results. In contrast, MITRE-
oriented solutions allow for the detailed analysis of attacker 
behavioral patterns, increasing the transparency of the 
analysis, but require manual rule updates and depend on the 
completeness of the knowledge base.

The combination of these approaches in a single detection 
engineering loop is seen as a promising direction, capable 
of combining the metric efficiency of ML models with the 
semantic accuracy of MITRE taxonomies. As noted in the 
studies by Georgiadou A. [2] and Zipperle M. [10], hybrid 
architectures allow for the formation of cause-and-effect 
relationships between events and adversary tactics, thereby 
increasing the adaptability and resilience of detection 
systems to new threat scenarios.

The development of Provenance-based Intrusion Detection 
Systems (PIDS) has become a logical stage in the evolution of 

detection engineering in response to the growing complexity 
of attacks and volumes of telemetry [6]. Unlike classic 
signature-based solutions, PIDS capture the cause-and-effect 
relationships between processes, files, and network objects, 
enabling the reconstruction of the event timeline and the 
analytical traceability of an attacker’s actions.

The study by Xiong, W. [9] systematized scientific works 
and proposed a structural model of PIDS that includes 
four interconnected modules—data collection, graph 
summarization, intrusion detection, and benchmark 
datasets. This typology made it possible to identify the 
bottlenecks of each lifecycle stage and to reveal the systemic 
limitations hindering practical implementation. For instance, 
the volume of data collected at the operating system kernel 
level in modern experiments reaches several terabytes, 
which causes an overload of computing nodes and reduces 
the efficiency of real-time processing. Table 2 examines the 
distribution of existing solutions by architectural modules 
and the main scalability problems.

Table 2. Main PIDS approaches by architectural module (Compiled by the author based on sources: [4, 9, 10])

Module Example systems Key objective Scalability issue
Data collection CamFlow, Sysmon, Provmon Collect provenance data from OS kernel High system load (>40%)
Graph summarization NodeMerge, LogApprox Compress event graphs (DAG) Semantic loss
Intrusion detection DeepLog, ProvDetector Detect APT anomalies Threshold dependency
Benchmark datasets DARPA TC E3, LANL Replicate real-world attack traces Insufficient documentation

As can be seen from the data in Table 2, the main load falls 
on the data collection module, which is implemented using 
low-level monitoring tools that provide maximum event 
completeness but at the same time create a load on system 
resources. Following this, the graph summarization module 
addresses the task of reducing the size of the directed acyclic 
graph, but methods like NodeMerge and LogApprox lead to a 
loss of semantics in the relationships between objects [7].

The intrusion detection module uses machine learning 
algorithms (e.g., DeepLog, ProvDetector) to identify 
anomalies in process behavior. However, such approaches 
remain dependent on rigidly defined thresholds, which limits 
their adaptation to new attack scenarios. Similar conclusions 
were reached in the study by Disha R. A. [1], which showed 
that even with high classification accuracy (F1 = 0.98), the 
effectiveness of the models depends on the correct selection 
of features and training conditions.

Furthermore, according to the observations of Georgiadou 
A. [2], the risk of errors increases in the absence of 

standardized mechanisms for data correlation, which makes 
the use of MITRE ATT&CK taxonomies as a normalization 
layer important. The study by González-Granadillo G. [3] 
emphasizes that such integration is possible only in the 
presence of unified event log formats and centralized SIEM 
platforms that ensure data compatibility between sources. 
The benchmark datasets module, as noted by Rosso M. [6], 
plays a key role in evaluating the correctness of detectors. 
However, even test environments such as DARPA TC E3 
and LANL are characterized by limited documentation and 
insufficient realism, which is confirmed in the analytical 
review by Zipperle M. [10]. This hinders the replication of 
attacks and the verification of the results obtained.

Consequently, the evolution of PIDS architectures reveals 
a contradiction between the depth of analytics and the 
computational stability of the systems. On the one hand, the 
high detail of provenance data allows for the reconstruction 
of complex attack scenarios; on the other hand, it causes 
problems of scalability and loss of semantics during graph 
compression. The comparative-analytical meta-analysis 
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of publications has shown that combining the advantages 
of both approaches is possible by forming hybrid models 
that unite graph analysis with the principles of detection 
engineering. As shown in the works of Xiong W. [9] and 
Sacher-Boldewin D. [7], such models distribute functions 
between levels: machine learning algorithms are responsible 
for event prioritization, while MITRE ATT&CK taxonomies 
handle the contextualization of adversary behavior, ensuring 
a balance between analytical depth and computational 
efficiency.

Discussion
Detection engineering as an independent direction in 
cybersecurity is formed at the intersection of data analytics, 
system monitoring, and organizational risk management. 
Based on an analysis of the presented research, a set of 
interconnected principles can be identified that define a 
holistic architecture for a Detection Engineering System and 
ensure its reproducibility in a highly critical infrastructure.

The study by Son V. N. [8] shows that the effectiveness of 
detection systems is directly dependent on the ability to 
combine low-level kernel events with high-level MITRE 
ATT&CK tactics. This correlation between Sysmon processes 
and TTPs allows for the detection of anomalies at the early 
stages of the attack lifecycle, ensuring the continuity of the 
analytical context from the system call level to the description 
of the attacker’s objectives. An equally important area of 

development is the standardization of data representation. 
The study by Georgiadou A. [2] proposes a model for unifying 
risks and cultural factors based on the STIX 2.1 format, 
which allows for the creation of a unified compatibility 
space between incident analysis systems. This unification 
facilitates the exchange of information between participants 
in the response chain and makes a quantitative assessment 
of the maturity of monitoring centers (SOCs) possible. As 
shown in the study by Zipperle M. [10], the contextualization 
of data through provenance graphs enables a shift from 
isolated events to the reconstruction of complete attack 
scenarios. The use of directed acyclic graphs (DAGs) makes 
it possible to track the relationships between processes and 
files, minimize the false-positive rate to 0.1%, and obtain an 
explainable structure of the attacker’s behavior.

The interaction between the analytical and computational 
levels of the systems is realized through feedback mechanisms. 
The study by Disha R. A. [1] shows that the application of the 
GIWRF method in combination with decision trees forms a 
closed-loop model update cycle, in which new data coming 
from the SOC automatically adjusts the weight coefficients 
of the features. This ensures an increase in accuracy (F1 
score) by 15–20% and resilience to APT-type attacks, which 
are characterized by a multi-layered structure and high 
behavioral variability. Table 3 presents the generalized 
principles for building a Detection Engineering System and 
their implementation in specific studies.

Table 3. Fundamental principles of Detection Engineering System (Compiled by the author based on sources: [1, 2, 8, 10])

Principle Implementation Effect
Multilayer correlation Sysmon ↔ MITRE TTP Early-stage detection
Data standardization STIX 2.1 + Cultural Matrix SOC maturity assessment
Behavioral contextualization Provenance DAG analysis FPR reduction to 0.1 %
ML integration GIWRF + DT Pipeline F1 increase by 15–20 %

The systematization presented in Table 3 allows us to 
consider the detection engineering system as a multi-
layered ecosystem in which telemetry sources, machine 
learning models, and MITRE ATT&CK taxonomies form a 
single analytical loop. Multi-level correlation provides cause-
and-effect links between processes and attack techniques. 
Data standardization ensures the reproducibility and 
compatibility of analytical models. The graph structures 
of PIDS create a context for interpreting behavior, and the 
interaction between the SOC and ML models ensures the 
system’s adaptability to the dynamics of threats.

Consequently, the fundamental principles of detection 
engineering form the methodological basis for building 
resilient and explainable defense systems capable of 
identifying incidents and predicting the development of 
attack scenarios. This approach sets a new standard in the 
organization of analytical processes in cybersecurity, where 
the priority shifts from reactive response to the predictive 
identification of threats within a unified loop of data, 
behavior, and context.

Modern detection engineering faces a number of 
fundamental limitations that hinder the transition from 
experimental models to industrial solutions. As shown in the 
study by Sacher-Boldewin D. [7], the main obstacle lies in 
the heterogeneity of event logs, the lack of unified formats, 
and the incompleteness of metadata, which reduces the 
reliability of provenance graphs and limits the scalability 
of analysis. In practice, this is evident, for example, when 
integrating Sysmon telemetry with corporate EDR platforms 
(CrowdStrike, Splunk ES): the difference in event formats 
and field schemas leads to a partial loss of context and a 
disruption of the links between processes during correlation. 
Even with the active use of low-level monitoring systems, 
the problem of overload persists—telemetry volumes reach 
several terabytes, and data normalization requires manual 
filtering and additional semantic processing. Another 
significant challenge is the deficit of realistic datasets. As 
noted by Khraisat A. [4], existing collections—DARPA TC E3 
and LANL—do not reflect the current level of threats, contain 
incomplete descriptions of attacks, and do not account for 
the complex scenarios characteristic of targeted campaigns. 
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As a result, machine learning algorithms are trained on 
incomplete or unbalanced samples, which leads to overfitting 
and an increase in the false-positive rate.

A special role is played by the problem of threshold 
dependency, which is characteristic of detectors that use 
fixed metric values. The study by Disha R. A. [1] shows that 
even models with high classification accuracy, built on the 
GIWRF method, demonstrate a decrease in quality when the 
distribution of input data changes. The absence of adaptive 
thresholds leads to the system becoming unstable against 
new types of attacks, especially in a dynamically changing 
infrastructure.

At the same time, the prospects for the further development 
of detection engineering are associated with the automation 
and integration of heterogeneous approaches. The study 
by Son V. N. [8] shows that the correlation of Sysmon 
logs with MITRE ATT&CK techniques can be automated 
by constructing correlation rules formed on the basis of 
provenance graphs and statistical models. This approach 
allows for the description of attacker behavior at the level of 
individual events, tactics, and procedures, creating a basis for 
the adaptive generation of protection rules. Similarly, Disha 
R. A. [1] considers the possibility of forming a feedback loop 
between monitoring systems and machine learning models. 
In this case, the SOC becomes an active source of data for 
self-learning, and accuracy metrics serve as parameters for 
tuning the algorithms. In the long term, this will allow for 
the construction of a continuous loop for updating detection 
rules, where each new attack automatically strengthens the 
system’s resilience.

Consequently, the key direction of development is the 
construction of a detection engineering pipeline—a holistic 
analytical chain that combines telemetry collection, behavior 
modeling, and feedback with operational centers. This 
structure will allow for the implementation of the adaptive 
threshold principle, ensuring a balance between the system’s 
sensitivity and stability.

The practical implementation of such an approach is already 
emerging in the integration of open-source tools—Sigma, 
OpenCTI, TheHive—with industrial SIEM platforms (Elastic, 
Splunk, IBM QRadar), which creates a basis for the automation 
of event correlation and the generation of detection rules 
in real time. The automatic updating of ATT&CK content 
and the exchange of indicators via STIX/TAXII allow for the 
formation of self-learning defense loops, where each new 
attack strengthens the analytical model.

In the long term, it is this approach that will become the 
methodological standard for intelligent systems for detecting 
and neutralizing attacks, uniting machine learning, graph 
analytics, and MITRE ATT&CK standards in a single research 
and practical loop.

Conclusion
The conducted research has confirmed that detection 

engineering is not a collection of disparate analysis methods 
but a holistic system that forms a new architecture for 
ensuring cybersecurity. The synthesis of machine learning, 
graph-based data provenance analysis, and MITRE ATT&CK 
taxonomies allows for a transition from a reactive response 
to incidents to the proactive prevention of attacks through 
a contextual understanding of adversary behavior and the 
interconnections between events.

It has been identified that the effectiveness of a detection 
engineering system is determined by the degree of 
standardization of input data, the correctness of the 
correlation between the system and behavioral levels, and 
the presence of a feedback loop with monitoring centers. 
The formation of adaptive thresholds, updated based on the 
actual results of SOC operations, ensures the resilience of 
algorithms to changes in the threat structure and allows for 
an increase in the accuracy and explainability of decisions.

The practical significance of this approach lies in the 
creation of a closed-loop analytical processing cycle, where 
telemetry, machine learning models, and the MITRE context 
are combined in a single risk management system. Such 
integration reduces the rate of false positives, accelerates the 
response to attacks, and increases the maturity of detection 
processes across the organization.

The prospects for further research are associated with the 
development of a detection engineering pipeline—a holistic 
analytical chain that includes the automatic generation of 
rules, the adaptive updating of models, and integration with 
the response infrastructure. The implementation of such 
an approach will allow for a transition to the intelligent 
automation of defense systems, where each new attack 
becomes a source of learning, and the system itself becomes 
a self-configuring mechanism for ensuring cyber resilience.
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