
Page | 1www.ulopenaccess.com

Universal Library of Innovative Research and Studies Research Article

Managing Technical Debt In Custom Servicenow Solutions
Venkata Surendra Reddy Narapareddy
ServiceNow SME, Specialized in ServiceNow Implementations.

Services like ServiceNow are adopted more in enterprise software, so making sure technical debt is managed is becoming a 
main priority for lasting usability, scalability, and how well the system works. This article discusses the reasons for technical 
debt in ServiceNow solutions created for different organizations and proposes ways to handle it. It describes the common 
forms of technical debt related to bad CMDB management, citizen development tools, and other issues according to the 
findings within the ServiceNow platform and enterprise IT. 

It also recommends certain steps like diligent oversight of stack structure, governance in line with stakeholder expectations, 
and constant refactoring to spot, track, and control technical debt. It shows that having flexible platforms must be balanced 
by following engineering principles, so ServiceNow’s worth is preserved despite adding many customizations.

Keywords: ServiceNow; Technical Debt; Low-Code Platforms; CMDB; Enterprise IT; Platform Customization.

Abstract

ISSN: 3065-0003

Open Access | PP: 01-08 

DOI: https://doi.org/10.70315/uloap.ulirs.2022.001

INTRODUCTION

The quick progress of digital service management has 
inspired many organizations to include ServiceNow in their 
workflows, so they can manage operations simply and with 
less time to deliver services. Even though these platforms give 
benefits of agility and configurability, they can also lead to a 
lot of TD, mainly when customizations do not include enough 
attention to the systems’ architecture or management over 
time. The initial explanation of technical debt as a metaphor 
for quick codes and the interest they gather over the years 
belongs to a software engineer from the 1990s (Ernst, 
Kazman, & Delange, 2021; Kruchten et al., 2012).

Relying on poorly scoped customizations, an improperly 
structured CMDB, and random development practices by 
technical people is one-way ServiceNow implementations 
end up with technical debt (Patel et al., 2019; Hintsch 
et al., 2021). Since ServiceNow is now used for multiple 
enterprise services aside from IT, TD has to handle various 
situations and change frequently (according to Schaffer et 
al., 2021). The problem is made worse when there is a lack of 
connection between user experience designs and long-term 
maintainability concerns, which is a problem mentioned 
by researchers and those in the field (Kario, 2018; Kotha, 
2017).

If not handled, the debt can weaken performance, raise the 
chances of security breaches, and reduce the platform’s 
versatility to adhere to new business needs (Blum & Blum, 
2020; Ramasubbu & Kemerer, 2016). While in traditional 
software, TD mostly deals with code, the platform-based 
architecture used in ServiceNow permits TD mainly through 
configuring, creating workflows, scripting, and changing the 

data model (Nechyporenko, 2015; Brown et al., 2010). Taking 
action to address this debt at the start is key to ensuring that 
critical services keep working normally.

This article attempts to bring together the latest ideas on 
technical debt and relate them to developing with ServiceNow. 
About both general and platform-based theories, we explain 
the major factors that create debt, assess their negative 
effect, and recommend steps to handle them.

LITERATURE REVIEW
Originally, technical debt was meant to describe the effects of 
not doing development the right way; now it is a real concern 
in the software business. This problem is highlighted by the 
importance of choosing viable trade-offs between quick 
delivery and enhancing the quality of the system since 
dedication to the process might quickly become costly as 
maintenance increases (Kruchten et al., 2012; Ernst et al., 
2021). Today’s IT service management makes use of flexible 
platforms such as ServiceNow so that deploying better 
solutions is possible in less time, yet it also leads to faster 
technical debt in the system (Hintsch et al., 2021; Brown et 
al., 2010).

Because ServiceNow helps organizations bring together 
tasks, automate parts of the workflow, and combine them with 
older technologies, its convenience makes it less consistent 
and hard to maintain (Nechyporenko, 2015; Schaffer et al., 
2021). Administrators often use unapproved approaches to 
change system details, such as writing JavaScript, setting up 
display rules, and configuring CMDB for their organizations. 
Because of such deviations, performance issues, threats to 
security, and limited scalability may appear (Patel et al., 
2019; Blum & Blum, 2020).



Page | 2Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

Notably, technical debt in ServiceNow means more than 
the usual coding issues; it also involves avoiding proper 
architecture, missing workflow documentation, modules 
created by employees, and service catalogues that are not 
in sync (Ernst et al., 2021; Hintsch et al., 2021). Despite a 
lot of research on technical debt, its control in low-code and 
platform-focused systems is not explored much, mostly in 
business environments like ServiceNow.

Comprehensive Understanding of the Topic

Dimensions of Technical Debt in ServiceNow

Because ServiceNow is a platform-as-a-service (PaaS) 
product, it comes with technical debt issues that are unlike 
those found in regular software programs. Kruchten et al. 
(2013) state that TD involves many areas such as architecture, 
documentation, coverage of tests, and the complexity of 
integration. Since introducing new features and adjustments 
in ServiceNow can be quick, and since code reviews often 
do not take place before deployment, these configurations 
can be risky (according to Nechyporenko, 2015 Brown et al., 
2010).

ServiceNow’s TD benefits a lot from the CMDB because 
it supports asset management, helps solve incidents, and 
tracks all changes. It is pointed out by Patel et al. (2019) that 
errors in data modelling, absence of proper synchronization 
with discovery tools, and setting CMDB classes too narrowly 
can damage both the reliability and performance of the 
data. When CMDB is made more complex, it also becomes 
more difficult to keep its data referential and follow data 
governance, so every new integration or automation effort 
will end up costing more.

Citizen development is another important factor contributing 
to TD since non-computer experts can make new programs 
using visual elements. As a result, development is easier and 
methods become more flexible, but it brings about unreliable 
designs, lack of routine documentation, and poor matching 
with how enterprise architectures are designed (Hintsch et 
al., 2021). When shadow IT occurs, the platform’s system 
may become confused and scattered, making it hard for IT to 
assist or adjust the system.

Figure 1. Framework for Managing Technical Debt in 
ServiceNow Solutions.

The Impact of Technical Debt on Platform Evolution

Technical debt that is not taken care of limits the ability 
of ServiceNow to grow in line with a company’s business 
changes. Ramasubbu and Kemerer (2016) that TD may reduce 
the reliability of software and introduce new problems for 
the whole system when long-term reduced conditions take 
place. Fragmented updates, unpredictable problems with 
scripts, and difficulties in maintaining integration are some 
of the company’s biggest weaknesses in ServiceNow (Blum 
& Blum, 2020).

With time, as organizations become more experienced with 
ServiceNow, it often turns into a key tool for transformation 
that assists HR, procurement, security, and customer 
experience (Schaffer et al., 2021). As a result, the amount 
of technical debt grows, so it becomes more important 
to manage architecture tightly to stop the platform from 
multiplying. As pointed out by Brown et al. (2010), utilizing 
tools, reviewing the architecture, and sharing knowledge 
helps maintain a project in the long run.

Figure 2. Frequency of Technical Debt Issues in ServiceNow 
Projects

Aim and Objectives of the Article

Due to the difficult and risky situation created by unmanaged 
technical debt in ServiceNow environments, the intention 
of this article is to look at how technical debt arises, how it 
influences the future performance of the platform, and how 
to address it.

Aim

To examine how technical debt occurs in custom applications 
for ServiceNow, look at the reasons behind it, and offer 
concrete ways to find, control, and address it.

Objectives

To explain technical debt concerning low-code enterprise •	
platforms.

To figure out the main reasons for technical debt in •	
customized ServiceNow settings.



Page | 3Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

To explore how TD can affect how easily a platform can •	
grow, be maintained, and operate well.

To provide the best methods and strategies that fit •	
ServiceNow’s special architecture and how it is used.

METHODOLOGY

Research for this study is based on narrative literature analysis 
and explores in detail the way technical debt appears and 
develops within personalized ServiceNow implementations. 
As there are multiple elements involved in technical debt 
in low-code settings, the research approach provides a 
detailed overview of established theories, platform-specific 
information, and ongoing service management ideas.

Research Design

The method used for this research is based on an interpretivist 
approach, which studies meaning and links among the 
findings in the literature, instead of using numbers to 
measure them. Since technical debt develops in areas where 
there are design, implementation, and resource decisions 
(Ernst et al., 2021; Kruchten et al., 2013), this approach is 
just right for it.

Researchers based their exploration on solid literature about 
technical debt (Brown et al., 2010; Kruchten et al., 2012) and 
then focused on ServiceNow (Nechyporenko, 2015; Patel et 
al., 2019). The findings of the research questions were pulled 
together and combined after being extracted and compared 
with a systematic review and thematic analysis.

Data Collection and Source Selection

The authors chose thirteen pieces of literature, primarily 
because they addressed the crucial elements of this study. 
These are some of the sources:

Some basic papers on the origins and development of •	
technical debt are Kruchten et al. (2012), Zazworka et al. 
(2013), and Brown et al. (2010).

Platform implementation, CMDB setup, using •	
ServiceNow’s citizen development, and user experience 
design techniques have been researched in four 
ServiceNow-specific studies (Patel et al., 2019; Kario, 
2018; Nechyporenko, 2015).

Three examples of works that seek to unite IT strategy, •	
governance, and digital transformation are Schaffer et 
al. (2021), and Blum, and Blum (2020).

Table 1. Overview of Sources Used in Literature Analysis

Authors Focus Area Methodology Type
Ernst et al. (2021) TD identification and resolution Practice-driven theory
Kario (2018) UX in ServiceNow Case study
Kotha (2017) Customer-centric ServiceNow design Practical framework
Nechyporenko (2015) Customization practices on ServiceNow Platform research
Patel et al. (2019) CMDB and data quality in ServiceNow Research report
Kruchten et al. (2012) TD conceptual framework Theoretical
Ramasubbu & Kemerer (2016) TD impact on enterprise reliability Quantitative analysis

The written sources were studied using a manual coding method. All the documents were studied and marked to notice any 
sections about the causes, results, or ways to manage technical debt in platforms like ServiceNow. Afterwards, the codes 
were sorted into key themes based on their frequency of occurrence and their meaning.

Some of the themes that appeared in the texts were:

Problems caused by lessened quality in the architecture and configuration (Brown et al., 2010; Kruchten et al., 2013)•	

The rise of platforms as a result of users modifying them however they want (Nechyporenko, 2015; Hintsch et al., •	
2021)

CMDB is not managed properly and the integration processes are not successful (Patel et al., 2019)•	

There are conflicts between making a good user experience and making the system easy to maintain (Kario, 2018; Kotha, •	
2017)

People develop IT tools without approval, which leads to risks (Hintsch et al., 2021)•	

Table 2. Primary Thematic Categories and Associated Sources

Theme Description Representative Sources
Configuration & Architecture Debt Scripting, unstandardized workflows, hard-

coded rules
Brown et al. (2010); Nechyporenko 
(2015)

CMDB and Data Quality Debt Poorly modelled CI classes, lack of automation 
or data sync

Patel et al. (2019); Ernst et al. 
(2021)

UX/Design-Maintainability Conflict Excessive personalization, lack of reusability Kario (2018); Kotha (2017)
Governance & Shadow Development Unauthorized development by business users, 

lack of lifecycle mgmt.
Hintsch et al. (2021); Blum & Blum 
(2020)



Page | 4Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

Analysis Procedure

There were several repetitions of DVD viewing, marking, 
organizing, and combining ideas to find insights.

First, I read through every source to figure out how it is 1. 
organized, what its arguments are, and what words and 
concepts are used.

I gave specific boxes or paragraphs in the data the 2. 
qualitative codes “CMDB fragmentation,” “upgrade 
fragility,” and “workflow sprawl.”

In Axial Coding, the codes were sorted into categories that 3. 
represented technical, organisational, and operational 
aspects.

The findings were compared to make sure they formed 4. 
a complete picture of how technical debt affects 
ServiceNow services.

Thanks to this, multiple approaches, including software 
engineering and IT governance, were combined into a united 
framework.

Ethical Considerations

Since this is a study of literary texts, it did not collect data 
from people or use any private information. Even so, they 
guaranteed that all the source material used came from the 
given references and that citations followed academic rules.

Limitations

Some issues affect this research. To start, it does not use 
interviews with ServiceNow architects, which could provide 
more detailed information about TD patterns in real-world 
cases. Second, using information from published articles may 
not include new updates or secret practices in the industry. 
In addition, the many industries where ServiceNow is used 
add variations that the general thematic analysis cannot 
cover (Ramasubbu& Kemerer, 2016; Schaffer et al., 2021).

Even so, by juxtaposing academic and practice literature on 

the subject, this method provides a solid basis for exploring 
and managing technical debt on low-code systems in 
organizations.

RESULTS
It is revealed from the literature that TD in ServiceNow is 
caused by various technical and organizational aspects that 
affect the system as a whole. In this section, the findings are 
divided into four big areas: architectural debt, configuration 
and CMDB debt, development process debt, and governance 
and lifecycle debt. More details are given for each topic, and 
there are related citations and pictures to make it easier to 
understand.

Architectural and Platform Configuration Debt

When short-term delivery is chosen over solid architecture, 
ServiceNow can end up with design issues within the 
implementation. It is commonly stressed by sources that 
not controlling the usage of scripting, business rules, and 
skipping default workflows makes Salesforce more prone 
to problems and difficult to handle (Nechyporenko, 2015; 
Brown et al., 2010; Kruchten et al., 2012).

Many experts have recognized the following patterns of 
architectural debt:

Client-side scripts that are used in an excessive way and •	
business rules that are not properly recorded.

Both forms of misuse show up when someone extends •	
the system tables in a way that goes against platform 
guidelines.

No use of abstraction in building workflows, which makes •	
them difficult to use more than once and increases the 
level of dependence among components.

Therefore, minor updates to the platform can be dangerous, 
for they are likely to cause undesired changes (Ernst et al., 
2021). In addition, when architectural integrity is violated, 
the app is likely to slow down with an increase in users.

Table 3. Common Architectural Anti-Patterns in ServiceNow Customizations

Anti-Pattern Description Source(s)
Hard-coded business rules Logic tied directly to field-level triggers. Nechyporenko (2015); Brown et al. (2010)
Custom table sprawl The proliferation of unnecessary custom tables Ernst et al. (2021)
Workflow duplication Redundant or cloned flows across departments Kruchten et al. (2013)
Lack of modularity in scripts Non-reusable scripting blocks scattered across UI layers Brown et al. (2010)

Figure 3. ServiceNow Architecture Layers Vulnerable to Technical Debt Accumulation



Page | 5Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

Configuration Management and CMDB Debt

The CMDB forms a core part of ServiceNow’s abilities in 
service modelling and automation. Yet, if consistent rules 
are not followed, the CMDB ends up being responsible for 
a huge technical debt. Patel et al. (2019) state that most TD 
challenges in this area come from:

There is no set naming and classification rule for CI 
(Configuration Item).

Issues that come from customizing CI too much.•	

Not all the data is present and existing data is outdated.•	

There are no efficient ways to connect to discovery and •	
automation tools.

These types of debt also consist of data concerns that affect 
making choices, automating tasks, and creating accurate 
reports. If there are CMDB-related TDs, the problems can 
spread to many areas, including incident management and 
change approval systems.

Table 4. Root Causes of CMDB-Related Technical Debt

CMDB Issue Consequence Reference
Manual data entry High error rate, stale or duplicate entries Patel et al. (2019)
No CI governance Uncontrolled additions, class inconsistencies Ernst et al. (2021)
Discovery tool misalignment Failure to sync environments accurately Nechyporenko (2015)
Over-customized CI types Breakage of standard reports and APIs Brown et al. (2010)

Figure 4. Impact Chain of CMDB Debt on Platform 
Automation and Service Quality

Citizen Development and Workflow Proliferation

Using low-code and no-code development in ServiceNow 
helps people speed up the process of coming up with new 
solutions. Hintsch et al. (2021) believe that unmanaged 
citizen development causes major problems in policies and 
data architecture.

If business users make workflows or apps without following 
IT governance, the result can be:

Data and logic that remain separated.•	

The code could be written again and again without any 
documentation.

If Shadow IT is present, it bypasses the security checks and 
regulations set forth by the company (Blum & Blum, 2020).

The growing number of customizations makes it difficult to 
fix, check, or rewrite the web application’s code.

The study suggests that technical debt becomes a part of the 

organization’s issues when developers’ duties are not defined 
or company guidelines are not strictly followed (Schaffer et 
al., 2021).

Lifecycle Management and Governance Debt

Lastly, literature proves that if lifecycle governance is missing, 
organizations that lack formal policies tend to accumulate 
debt during a ServiceNow project.

Being able to keep track of all workflow and script •	
versions.

Automatic testing is carried out whenever new versions of 
the software are deployed.

Looking over and dropping modules that are no longer •	
needed (Zazworka et al., 2013; Ernst et al., 2021).

With more custom work done, the system eventually becomes 
overloaded with unnecessary data and extra risks. According 
to Kario (2018) and Kotha (2017), usually, customizations 
focused on user experience during the early release period 
tend to be harder to manage and fix in the future, unless 
regularly checked.

Those organizations that either do not update systems 
continually or have no single governance board are more at 
risk of failure during upgrades, security attacks, and delays 
in responding to changes (Ramasubbu& Kemerer, 2016).

Overall, studies point out that the presence of technical debt 
in ServiceNow is due to certain aspects of the program (e.g., 
coding, data design) and shortcomings on the organization’s 
side (e.g., insufficient governance, and info gaps). These parts 
are connected and can strengthen each other, for example, a 
bad CMDB harms automation, and unmanaged development 
leads to inconsistency in architecture.

A strategy that covers technical aspects, governance, 
architecture, and attitude toward customization should be 
used to manage TD in ServiceNow.

Service 
Quality



Page | 6Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

DISCUSSION
What this study has found is that TD in ServiceNow cannot 
be separated from both technical and organizational areas. 
Just as Kruchten et al. (2012) explain, technical debt also 
includes more than buggy software, and it also affects the 
choices and beliefs throughout the development period. In 
the case of custom ServiceNow solutions, these guidelines 
play an even bigger role now that the system is becoming a 
main hub for delivering services within a company (Schaffer 
et al., 2021).

Technical Debt as a Consequence of Agility and 
Flexibility

The fact that ServiceNow can develop quickly through low-
code/no-code tools and offers many options to configure and 
change information and data makes its value proposition 
strong. Still, the ability to do whatever you want without 
conforming to architecture or written rules often leads to 
technical debt. Nechyporenko (2015) demonstrates that 
when platforms are open, people often create custom tables 
and apply redundant business rules, which eventually results 
in the system’s architecture being weakened.

Ernst et al. (2021) mention that unknown factors and 
pressure often cause TD, and not necessarily because 
someone lacks knowledge or expertise. Because of business-
driven pressure, these choices in the ecosystem may be to 
implement a workflow swiftly, respond to a client’s demand, 
or address a workflow issue as fast as possible. Still, when 
many band-aid policies are introduced, they reduce the 
system’s overall consistency and make it harder to adjust 
later.

The skills and expectations set by a leader are needed to keep 
the platform flexible and prevent long-term problems.

Organizational Factors: Governance, Culture, and 
Lifecycle Thinking

What deserves more attention than the technical aspects are 
the factors that created or increased technical debt within 
the company. Experts say that failing to have review boards, 
strict workflow management, enough quality testing, and 
control over citizen development are some main reasons 
behind runaway debt (Hintsch et al., 2021; Blum & Blum, 
2020). Because anyone on a team in ServiceNow can create 
new applications without IT’s review, rules can be applied 
differently across the organization.

Similar to what Kario (2018) thought, Software Engineering 
in ServiceNow may also become slower and more difficult to 
maintain after a post-customization support period. Brown 
et al. (2010) and Zazworka et al. (2013) describe how not 
including lifecycle principles in design choices might lead to 
more expenses in the future.

To deal with this, the organization should ensure that people 
from each area officially care about and monitor the platform. 
Old modules have to be replaced opportunistically and 
technical debt should be regularly evaluated and cleared.

CMDB: The Hidden Debt Multiplier

Although ServiceNow relies heavily on the Configuration 
Management Database (CMDB), this part is also sensitive 
and can weaken the platform if not looked after well. Patel 
et al. discovered (in 2019) that it’s not only automation that 
suffers when CI records are incorrect, certain, or duplicated, 
but it also brings about failures across incidents, change, and 
asset management.

Specifically, CMDB debt makes everything else worse by 
enhancing problems associated with automation rules and 
service catalogues. Since it occupies a vital position in the 
platform’s structure, slight errors may travel to different 
parts of the workflow.

As CMDB is important, its management should be treated 
like source code and validated by schemas, automated sync, 
audit logs, and tracking its life. They note that detecting and 
monitoring hidden risks requires automated tools that come 
into action only at the time of crisis (Ernst et al., 2021).

Toward a Platform-Centric View of Technical Debt

In the past, the main techniques for managing technical debt 
were changing code and conducting tests. Yet, for platforms 
such as ServiceNow, debt management ought to be driven by 
taking configurations, flow, permissions, and data as primary 
pillars of the software creation process.

According to Schaffer et al. (2021), ServiceNow moved from 
just a back-office system to an important part of digital 
transformation in organizations. Achieving this effect calls 
for examining and changing the process of customization. 
Now, changes should focus on all parts of the platform, the 
ability of tools to interact, their openness to upgrades, and 
the alignment of those who use them.

Figure 5. From Tactical Customization to Strategic Platform 
Stewardship

The chart depicts the change from working in seclusion to 
considering a broad approach as a platform for the whole 
company.

Implications for Practice and Future Research

The findings are very important for those who work in the 
field.



Page | 7Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

Architects have to set up initial design regulations and 
enforce them in every development.

Documentation should be prioritized by developers and 
people who create salesforce applications.

Board members and stakeholders should focus on checking 
both feature deliveries, as well as how much technical debt 
there is, based on reuse statistics, inactive scripts, and the 
condition of the CI.

It is important for platforms to use automated methods •	
to spot hidden debts and suggest how to fix them.

To investigate this further, reviewing real ServiceNow cases 
may reveal the growth and cost of TD debt, expenses needed 
to address issues, and development in following good TD 
governance practices. Total dependence on a government 
could be monitored over the years to see the changes it 
makes to TD.

CONCLUSION
It is becoming more difficult to manage technical debt 
in custom ServiceNow solutions, as the platform helps 
organizations deliver important services and automates 
tasks. Based on an analysis of available literature, this 
research points out that in ServiceNow, TD is more than 
bad code; it also affects various areas of the platform’s 
architecture, configuration, how rules are followed, and the 
workplace culture.

A number of important trends can be seen in the literature 
under consideration. In the beginning, ServiceNow’s 
flexibility for fast delivery and alignment with business can 
result in harsh customization, strictly set logic, and division 
of the system, mainly because standards are rarely put in 
place (Nechyporenko, 2015; Ernst et al., 2021). Also, a poorly 
managed CMDB often fills up with too much information and 
configuration data (Patel, Cook, Schabell, & Thomas, 2019). 
In addition, making technology simple for users leads to 
more chances for critical issues, especially since citizens can 
develop solutions that might damage the consistency of the 
platform (Hintsch et al., 2021; Blum & Blum, 2020).

It is highlighted in this article that the successful management 
of TD in ServiceNow relies on an approach that joins 
enterprise architecture principles, managing the platforms 
throughout the lifespan, and paying close attention to the 
stakeholders. Automated testing, audits, and well-structured 
scripts should go along with policies that support refactoring, 
carrying out debt reviews, and clear rules on applying custom 
changes (Brown et al., 2010; Kruchten et al., 2012).

In the end, ServiceNow’s technical debt can be a challenge or 
a chance for further improvement. If technology is managed 
carefully, it helps design decisions, increases how reliable the 
platform is, and keeps development related to the company’s 
long-term goals. Since the move from specialization to 
platformization (Schaffer et al., 2021), companies have to 
learn that managing technical debt is no longer optional 

and needs to be treated as a significant function of platform 
management.

REFERENCES

Blum, D., & Blum, D. (2020). Simplify and rationalize IT 1. 
and security. In Rational cybersecurity for business: The 
security leaders’ guide to business alignment (pp. 199–
225). Apress. https://doi.org/10.1007/978-1-4842-
5952-8_7

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., 2. 
Kruchten, P., ... &Zazworka, N. (2010, November). 
Managing technical debt in software-reliant systems. 
In Proceedings of the FSE/SDP Workshop on Future of 
Software Engineering Research (pp. 47–52). https://
doi.org/10.1145/1882362.1882373

Ernst, N., Kazman, R., & Delange, J. (2021). Technical debt 3. 
in practice: How to find it and fix it. MIT Press. https://
doi.org/10.7551/mitpress/12440.001.0001

Hintsch, J., Staegemann, D., Volk, M., & Turowski, 4. 
K. (2021). Low-code development platform usage: 
Towards bringing citizen development and enterprise IT 
into harmony. Australasian Conference on Information 
Systems (ACIS). https://aisel.aisnet.org/acis2021/11/

Kario, P. (2018). Service design approach to understand 5. 
the user experiences on the ServiceNow cloud solution 
[Bachelor’s thesis, Laurea University of Applied 
Sciences]. Theseus. https://urn.fi/URN:NBN:fi:amk-
2018113019182

Kotha, V. (2017). Customer-centric service management 6. 
using ServiceNow [Master’sthesis, St. Cloud State 
University]. The Repository at St. Cloud State. https://
repository.stcloudstate.edu/msia_etds/35/

Kruchten, P., Nord, R. L., &Ozkaya, I. (2012). Technical 7. 
debt: From metaphor to theory and practice. IEEE 
Software, 29(6), 18–21. https://doi.org/10.1109/
MS.2012.167

Kruchten, P., Nord, R. L., Ozkaya, I., &Falessi, D. (2013). 8. 
Technical debt: Towards a crisper definition. Report on 
the 4th International Workshop on Managing Technical 
Debt. ACM SIGSOFT Software Engineering Notes, 38(5), 
51–54. https://doi.org/10.1145/2507288.2507326

Nechyporenko, T. (2015). ServiceNow as a platform 9. 
– Practical research [Bachelor’s thesis, Haaga-Helia 
University of Applied Sciences]. Theseus. https://www.
theseus.fi/bitstream/handle/10024/102830/Thesis_
Tamara_Nechyporenko.pdf?sequence=1

Patel, M., Patil, S., Tzanavara, K., Chauhan, M., Wang, Y., 10. 
Xie, H., & Shi, L. (2019). ServiceNow: CMDB research. 
Clark University. https://commons.clarku.edu/sps_
masters_papers/50/



Page | 8Universal Library of Innovative Research and Studies

Managing Technical Debt In Custom Servicenow Solutions

Ramasubbu, N., & Kemerer, C. F. (2016). Technical debt 11. 
and the reliability of enterprise software systems: A 
competing risks analysis. Management Science, 62(5), 
1487–1510. https://doi.org/10.1287/mnsc.2015.2196

Schaffer, N., Ritzenhoff, M., Engert, M., & Krcmar, 12. 
H. (2021). From specialization to platformization: 
Business model evolution in the case of ServiceNow. In 
Proceedings of the European Conference on Information 
Systems (ECIS). https://www.fortiss.org/fileadmin/
user_upload/06_Ergebnisse/Publikationen/FROM_
SPECIALIZATION_TO_PLATFORMIZATION___BUSINESS_
MODEL_EVOLUTION.pdf

Zazworka, N., Spínola, R. O., Vetro’, A., Shull, F., & Seaman, 13. 
C. (2013, April). A case study on effectively identifying 
technical debt. In Proceedings of the 17th International 
Conference on Evaluation and Assessment in Software 
Engineering (pp. 42–47).https://dl.acm.org/doi/
abs/10.1145/2460999.2461005

Citation: Venkata Surendra Reddy Narapareddy, “Managing Technical Debt In Custom Servicenow Solutions”, Universal 
Library of Innovative Research and Studies, 2022; 01-08. DOI: https://doi.org/10.70315/uloap.ulirs.2022.001.

Copyright: © 2022 The Author(s). This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited.


