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The deployment of artificial intelligence on edge devices has emerged as a critical enabler for real-time robotic systems, 
where latency constraints and computational efficiency directly impact system performance and safety. This paper 
presents a comprehensive analysis of edge AI architectures and deployment strategies for robotic applications, examining 
the interplay between hardware platforms, model optimization techniques, and application-specific requirements. We 
systematically evaluate the performance characteristics of modern edge computing platforms, including the NVIDIA 
Jetson family, and assess optimization techniques such as quantization, pruning, and inference acceleration frameworks. 
Drawing from established patterns in modular robotic architectures and closed-loop control systems, we propose a five-
stage deployment methodology that guides practitioners through requirement analysis, model selection, optimization, 
hardware alignment, and system integration. Experimental evaluation demonstrates that optimized edge deployments 
achieve inference latencies below 10 milliseconds—an order of magnitude improvement over cloud-based processing—
while maintaining accuracy within 2% of full-precision baselines. The findings provide actionable guidance for robotics 
practitioners seeking to deploy AI capabilities on resource-constrained embedded platforms while meeting stringent real-
time requirements.
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Introduction
The integration of artificial intelligence into robotic systems 
has transformed capabilities across domains ranging from 
industrial automation to service robotics. However, deploying 
AI models in real-time robotic applications presents 
fundamental challenges that distinguish these systems 
from cloud-based AI services. Robotic systems operating 
in dynamic environments require rapid perception-to-
action cycles, where delays of even tens of milliseconds can 
compromise safety, efficiency, and task performance [1].

Traditional approaches that offload AI inference to cloud 
servers introduce network latency that proves incompatible 
with real-time control requirements. Cloud-based processing 
typically incurs round-trip latencies of 100 milliseconds 
or more, whereas autonomous vehicle perception systems 
require end-to-end processing within 10 milliseconds for 
safe operation at highway speeds [2]. This latency gap 
has driven the emergence of edge AI—the deployment of 
AI models directly on embedded devices co-located with 
sensors and actuators.

Modern robotic systems increasingly adopt modular software 
architectures that separate perception, reasoning, and 

control into distinct layers with well-defined timing contracts 
[3]. This architectural pattern enables the deployment of 
computationally intensive AI models at the perception layer 
while maintaining deterministic timing for safety-critical 
control loops. The closed-loop control strategies employed 
in robotic manipulation, where grasp parameters are 
continuously updated based on visual feedback [4], exemplify 
applications where edge AI deployment is essential for 
achieving the required response times.

The edge AI ecosystem has matured significantly, with 
hardware platforms now offering hundreds of tera-operations 
per second (TOPS) within power envelopes suitable for 
mobile and embedded deployment [5]. Simultaneously, 
software frameworks and optimization techniques have 
advanced to enable efficient deployment of complex neural 
networks on resource-constrained devices [6]. However, 
effectively leveraging these capabilities requires systematic 
approaches that address the unique constraints of robotic 
applications.

This paper presents a comprehensive analysis of edge AI for 
real-time robotic systems. The contributions include: (1) a 
systematic evaluation of edge computing platforms and their 
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suitability for robotic applications; (2) an assessment of 
model optimization techniques and their impact on inference 
performance; (3) a five-stage deployment methodology 
derived from current best practices; and (4) experimental 
validation demonstrating achievable performance 
characteristics for representative robotic workloads.

The remainder of this paper is organized as follows: Section 
2 presents the materials and methods, including hardware 
platforms, optimization techniques, and evaluation 
methodology. Section 3 presents results and discussion 
covering performance benchmarks, optimization trade-offs, 
and integration considerations. Section 4 concludes with 
practical recommendations for practitioners.

Materials and Methods
Edge Computing Platforms

The evaluation encompasses representative edge computing 
platforms spanning the performance-power spectrum 
relevant to robotic applications.

NVIDIA Jetson Family: The Jetson platform provides GPU-
accelerated inference optimized for robotics and autonomous 
systems. The Jetson AGX Orin delivers up to 275 TOPS of AI 
performance with power configurable between 15W and 
60W, representing an 8X performance improvement over 
the previous-generation Jetson AGX Xavier [5]. The recently 
announced Jetson Thor further advances capabilities to 
2,070 FP4 TFLOPS within a 130W envelope, providing 7.5X 
higher AI compute than the AGX Orin [7].

Google Coral TPU: The Coral Edge TPU provides 4 TOPS 
of inference performance at 2W power consumption, 
suitable for lower-complexity models in power-constrained 
applications [8].

Qualcomm Robotics Platforms: The RB5 and RB6 platforms 
combine heterogeneous computing with 5G connectivity, 
targeting autonomous mobile robots and drones with 15 
TOPS AI performance [9].

Model Optimization Techniques

Deploying neural networks on edge devices requires 
optimization techniques that reduce computational 
requirements while preserving model accuracy.

Quantization: Reducing numerical precision from 32-bit 
floating point (FP32) to lower bit-widths significantly 
accelerates inference. INT8 quantization typically achieves 

3-4X speedup compared to FP32, with accuracy loss 
under 1-2% for well-calibrated models [6]. Post-training 
quantization (PTQ) offers simplicity without retraining, 
while quantization-aware training (QAT) produces superior 
accuracy by simulating quantization during training [10].

Pruning: Removing redundant weights and neurons reduces 
model size and computational requirements. Structured 
pruning removes entire filters or channels, enabling direct 
acceleration on standard hardware, while unstructured 
pruning achieves higher compression ratios but requires 
specialized sparse computation support [11].

Knowledge Distillation: Training compact student networks 
to mimic larger teacher networks transfers capabilities to 
deployment-efficient architectures [12]. Neural Architecture 
Search (NAS) automates discovery of efficient architectures 
optimized for specific hardware targets [13].

Inference Acceleration Frameworks

Software frameworks optimize neural network execution 
for target hardware. TensorRT, NVIDIA’s inference optimizer, 
applies layer fusion, kernel auto-tuning, precision calibration, 
and memory optimization to maximize throughput on 
GPU hardware [6]. ONNX Runtime provides cross-platform 
inference with execution providers for various accelerators 
[14]. TensorFlow Lite supports mobile and embedded 
deployment with quantization and hardware delegation [15].

Evaluation Methodology

Performance evaluation employed standardized workloads 
representative of robotic perception tasks: object detection 
(YOLOv5, YOLOv8), pose estimation (MediaPipe Pose, 
MoveNet), semantic segmentation (DeepLabV3, BiSeNet), 
and grasp assessment networks for manipulation planning 
informed by visual servoing requirements [4].

Metrics captured include inference latency (p50, p95, p99), 
throughput (FPS), accuracy (mAP, PCK), power consumption, 
and memory utilization. All experiments were conducted on 
NVIDIA Jetson AGX Orin configured at 60W power mode 
with JetPack 6.0, TensorRT 10.0, and CUDA 12.2.

Results and Discussion
Platform Performance Benchmarks

Table 1 presents inference latency results for object detection 
models across optimization configurations on the Jetson AGX 
Orin platform.

Table 1. Object Detection Inference Latency (Jetson AGX Orin)

Model Precision Latency (ms) Throughput (FPS) mAP
YOLOv5n FP32 8.2 122 28.0
YOLOv5n FP16 4.1 244 27.9
YOLOv5n INT8 2.8 357 27.4
YOLOv5s FP32 12.4 81 37.4
YOLOv5s INT8 4.1 244 36.8
YOLOv8n INT8 2.6 385 36.7
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INT8 quantization achieves 2.9-3.0X speedup compared to FP32 while retaining 98.4% of baseline accuracy, consistent with 
reported findings that quantization delivers significant acceleration with minimal accuracy degradation [6]. The YOLOv8n 
model with INT8 precision achieves sub-3ms inference latency, enabling perception rates exceeding 300Hz.

Comparison with Cloud Processing

Table 2 contrasts edge deployment latency against cloud-based inference, demonstrating the order-of-magnitude 
improvement achieved through edge processing.

Table 2. Edge vs. Cloud Inference Latency Comparison

Processing Location Network (ms) Inference (ms) Total (ms)

Cloud (GPU Server) 80-120 5-10 85-130

Edge (Jetson Orin) 0 3-8 3-8

Edge (Coral TPU) 0 8-15 8-15

Edge deployment eliminates network latency entirely, achieving total latencies under 10ms compared to 100ms+ for cloud 
processing. This improvement is critical for robotic applications where research indicates that teleoperation latency below 
170ms has minor impact on operator performance, while latency exceeding 700ms makes real-time interaction nearly 
impossible [16]. Visual servoing systems for robotic manipulation typically require perception latencies below 33ms to 
support 30Hz control loops [4].

Optimization Technique Analysis

Table 3 summarizes the impact of individual optimization techniques on the YOLOv5s model.

Table 3. Optimization Technique Impact on YOLOv5s

Technique Speedup Accuracy Retention Size Reduction

FP16 Conversion 2.0X 99.8% 50%

INT8 PTQ 3.0X 98.4% 75%

INT8 QAT 3.0X 99.2% 75%

Pruning (50%) 1.8X 98.0% 50%

Pruning + INT8 4.2X 97.1% 87%

Quantization-aware training (QAT) preserves 99.2% of baseline accuracy while achieving 3.0X speedup, outperforming 
post-training quantization. Combined pruning and quantization achieves 4.2X speedup with 97.1% accuracy retention. The 
results align with comprehensive surveys reporting 2-4X model compression and 20-80% computational savings through 
quantization techniques [17].

Five-Stage Deployment Methodology

Based on patterns identified across successful edge AI deployments and established robotic system design principles [3], 
we propose a systematic five-stage methodology: (1) Requirement Definition—establishing quantitative targets for latency, 
accuracy, power, and memory; (2) Model Selection—choosing architectures from the accuracy-latency Pareto frontier; 
(3) Optimization—applying quantization, pruning, and architecture modifications; (4) Hardware Alignment—configuring 
inference frameworks for target hardware; and (5) System Integration—integrating optimized models with appropriate 
scheduling and resource management.

Robotic System Integration

Effective edge AI deployment requires integration with broader robotic system architectures. The modular software 
architecture for mobile manipulation systems described by Ghosh [3] provides a template where AI perception components 
operate within timing contracts that preserve control loop determinism.

For manipulation tasks employing closed-loop grasping with visual servoing [4], edge AI enables the continuous perception 
updates required for feedback control. Table 4 demonstrates achieved performance for a complete visual servoing pipeline.
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Table 4. Visual Servoing Pipeline Performance

Component Latency (ms) Target (ms)
Image Capture 2.1 <5
Object Detection 4.1 <10
Pose Estimation 6.2 <15
Grasp Planning 3.4 <10
Total Pipeline 15.8 <33

The total pipeline latency of 15.8ms supports 60Hz 
perception updates, exceeding the 30Hz minimum for stable 
visual servoing control. This performance level enables 
the continuous grasp parameter recalculation during arm 
motion described in closed-loop grasping techniques [4].

Power and Thermal Considerations

Edge deployment for mobile robots requires careful power 
management. The Jetson AGX Orin’s configurable power 
modes enable dynamic adaptation based on battery state and 
thermal conditions. At 30W—half the maximum power—the 
system still achieves 147 FPS for YOLOv5s INT8 inference, 
sufficient for most robotic perception requirements while 
extending operational duration for mobile platforms.

Discussion

The experimental results validate edge AI as a mature 
technology for real-time robotic systems. Key findings 
include: sub-10ms inference latency achievable for object 
detection and pose estimation; quantization-aware training 
preserving 99% of baseline accuracy while achieving 
3X speedup; the five-stage deployment methodology 
complementing established robotic software architecture 
patterns [3]; and edge AI performance supporting visual 
servoing control loops at 30-60Hz, enabling closed-loop 
manipulation strategies [4].

Limitations include thermal management for sustained 
operation, model-specific optimization requirements, and 
the need for application-specific accuracy validation. Future 
edge platforms including Jetson Thor promise further 
performance improvements [7].

Conclusion
This paper presented a comprehensive analysis of edge 
AI deployment for real-time robotic systems. Through 
systematic evaluation of hardware platforms, optimization 
techniques, and integration strategies, we demonstrated that 
current edge computing technology enables AI inference at 
latencies compatible with robotic control requirements.

Key findings include: (1) INT8 quantization achieves 3X 
speedup with under 2% accuracy loss; (2) edge deployment 
reduces inference latency by 10X compared to cloud 
processing; (3) visual servoing pipelines achieve total 
latencies under 20ms, supporting 30-60Hz control loops; 
and (4) the five-stage deployment methodology provides 
actionable guidance for practitioners.

For roboticists deploying AI capabilities on embedded 
platforms, we recommend: prioritizing quantization-aware 
training when accuracy margins permit; maintaining model 
portfolios for runtime adaptation; integrating AI components 
within modular architectures with explicit timing contracts; 
and validating end-to-end system performance under 
realistic operating conditions.

Future work will explore dynamic model selection based 
on computational headroom, integration with emerging 
hardware platforms, and automated optimization pipelines 
that adapt to evolving model architectures.
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