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The deployment of artificial intelligence on edge devices has emerged as a critical enabler for real-time robotic systems,
where latency constraints and computational efficiency directly impact system performance and safety. This paper
presents a comprehensive analysis of edge Al architectures and deployment strategies for robotic applications, examining
the interplay between hardware platforms, model optimization techniques, and application-specific requirements. We
systematically evaluate the performance characteristics of modern edge computing platforms, including the NVIDIA
Jetson family, and assess optimization techniques such as quantization, pruning, and inference acceleration frameworks.
Drawing from established patterns in modular robotic architectures and closed-loop control systems, we propose a five-
stage deployment methodology that guides practitioners through requirement analysis, model selection, optimization,
hardware alignment, and system integration. Experimental evaluation demonstrates that optimized edge deployments
achieve inference latencies below 10 milliseconds—an order of magnitude improvement over cloud-based processing—
while maintaining accuracy within 2% of full-precision baselines. The findings provide actionable guidance for robotics
practitioners seeking to deploy Al capabilities on resource-constrained embedded platforms while meeting stringent real-
time requirements.
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INTRODUCTION

The integration of artificial intelligence into robotic systems
has transformed capabilities across domains ranging from
industrial automation to service robotics. However, deploying
Al models in real-time robotic applications presents
fundamental challenges that distinguish these systems

control into distinct layers with well-defined timing contracts
[3]- This architectural pattern enables the deployment of
computationally intensive Al models at the perception layer
while maintaining deterministic timing for safety-critical
control loops. The closed-loop control strategies employed
in robotic manipulation, where grasp parameters are
continuously updated based on visual feedback [4], exemplify

from cloud-based Al services. Robotic systems operating
in dynamic environments require rapid perception-to-
action cycles, where delays of even tens of milliseconds can
compromise safety, efficiency, and task performance [1].

Traditional approaches that offload Al inference to cloud
servers introduce network latency that proves incompatible
with real-time control requirements. Cloud-based processing
typically incurs round-trip latencies of 100 milliseconds
or more, whereas autonomous vehicle perception systems
require end-to-end processing within 10 milliseconds for
safe operation at highway speeds [2]. This latency gap
has driven the emergence of edge Al—the deployment of
Al models directly on embedded devices co-located with
sensors and actuators.

Modern robotic systems increasingly adopt modular software
architectures that separate perception, reasoning, and

applications where edge Al deployment is essential for
achieving the required response times.

The edge Al ecosystem has matured significantly, with
hardware platforms now offering hundreds of tera-operations
per second (TOPS) within power envelopes suitable for
mobile and embedded deployment [5]. Simultaneously,
software frameworks and optimization techniques have
advanced to enable efficient deployment of complex neural
networks on resource-constrained devices [6]. However,
effectively leveraging these capabilities requires systematic
approaches that address the unique constraints of robotic
applications.

This paper presents a comprehensive analysis of edge Al for
real-time robotic systems. The contributions include: (1) a
systematic evaluation of edge computing platforms and their
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suitability for robotic applications; (2) an assessment of
model optimization techniques and their impact on inference
performance; (3) a five-stage deployment methodology
derived from current best practices; and (4) experimental
validation = demonstrating  achievable  performance
characteristics for representative robotic workloads.

The remainder of this paper is organized as follows: Section
2 presents the materials and methods, including hardware
platforms, optimization techniques, and evaluation
methodology. Section 3 presents results and discussion
covering performance benchmarks, optimization trade-offs,
and integration considerations. Section 4 concludes with
practical recommendations for practitioners.

MATERIALS AND METHODS
Edge Computing Platforms

The evaluation encompasses representative edge computing
platforms spanning the performance-power spectrum
relevant to robotic applications.

NVIDIA Jetson Family: The Jetson platform provides GPU-
accelerated inference optimized for robotics and autonomous
systems. The Jetson AGX Orin delivers up to 275 TOPS of Al
performance with power configurable between 15W and
60W, representing an 8X performance improvement over
the previous-generation Jetson AGX Xavier [5]. The recently
announced Jetson Thor further advances capabilities to
2,070 FP4 TFLOPS within a 130W envelope, providing 7.5X
higher Al compute than the AGX Orin [7].

Google Coral TPU: The Coral Edge TPU provides 4 TOPS
of inference performance at 2W power consumption,
suitable for lower-complexity models in power-constrained
applications [8].

Qualcomm Robotics Platforms: The RB5 and RB6 platforms
combine heterogeneous computing with 5G connectivity,
targeting autonomous mobile robots and drones with 15
TOPS Al performance [9].

Model Optimization Techniques

Deploying neural networks on edge devices requires
optimization techniques that reduce computational
requirements while preserving model accuracy.

Quantization: Reducing numerical precision from 32-bit
floating point (FP32) to lower bit-widths significantly
accelerates inference. INT8 quantization typically achieves

Table 1. Object Detection Inference Latency (Jetson AGX Orin)

3-4X speedup compared to FP32, with accuracy loss
under 1-2% for well-calibrated models [6]. Post-training
quantization (PTQ) offers simplicity without retraining,
while quantization-aware training (QAT) produces superior
accuracy by simulating quantization during training [10].

Pruning: Removing redundant weights and neurons reduces
model size and computational requirements. Structured
pruning removes entire filters or channels, enabling direct
acceleration on standard hardware, while unstructured
pruning achieves higher compression ratios but requires
specialized sparse computation support [11].

Knowledge Distillation: Training compact student networks
to mimic larger teacher networks transfers capabilities to
deployment-efficient architectures [12]. Neural Architecture
Search (NAS) automates discovery of efficient architectures
optimized for specific hardware targets [13].

Inference Acceleration Frameworks

Software frameworks optimize neural network execution
for target hardware. TensorRT, NVIDIA’s inference optimizer,
applieslayer fusion, kernel auto-tuning, precision calibration,
and memory optimization to maximize throughput on
GPU hardware [6]. ONNX Runtime provides cross-platform
inference with execution providers for various accelerators
[14]. TensorFlow Lite supports mobile and embedded
deployment with quantization and hardware delegation [15].

Evaluation Methodology

Performance evaluation employed standardized workloads
representative of robotic perception tasks: object detection
(YOLOv5, YOLOv8), pose estimation (MediaPipe Pose,
MoveNet), semantic segmentation (DeepLabV3, BiSeNet),
and grasp assessment networks for manipulation planning
informed by visual servoing requirements [4].

Metrics captured include inference latency (p50, p95, p99),
throughput (FPS), accuracy (mAP, PCK), power consumption,
and memory utilization. All experiments were conducted on
NVIDIA Jetson AGX Orin configured at 60W power mode
with JetPack 6.0, TensorRT 10.0, and CUDA 12.2.

RESULTS AND DISCUSSION
Platform Performance Benchmarks

Table 1 presents inference latency results for object detection
models across optimization configurations on the Jetson AGX
Orin platform.

Model Precision Latency (ms) Throughput (FPS) mAP
YOLOv5n FP32 8.2 122 28.0
YOLOv5n FP16 4.1 244 27.9
YOLOv5n INT8 2.8 357 27.4
YOLOv5s FP32 12.4 81 37.4
YOLOvV5s INT8 4.1 244 36.8
YOLOv8n INT8 2.6 385 36.7
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INT8 quantization achieves 2.9-3.0X speedup compared to FP32 while retaining 98.4% of baseline accuracy, consistent with
reported findings that quantization delivers significant acceleration with minimal accuracy degradation [6]. The YOLOv8n
model with INT8 precision achieves sub-3ms inference latency, enabling perception rates exceeding 300Hz.

Comparison with Cloud Processing

Table 2 contrasts edge deployment latency against cloud-based inference, demonstrating the order-of-magnitude
improvement achieved through edge processing.

Table 2. Edge vs. Cloud Inference Latency Comparison

Processing Location Network (ms) Inference (ms) Total (ms)
Cloud (GPU Server) 80-120 5-10 85-130
Edge (Jetson Orin) 0 3-8 3-8

Edge (Coral TPU) 0 8-15 8-15

Edge deployment eliminates network latency entirely, achieving total latencies under 10ms compared to 100ms+ for cloud
processing. This improvement is critical for robotic applications where research indicates that teleoperation latency below
170ms has minor impact on operator performance, while latency exceeding 700ms makes real-time interaction nearly
impossible [16]. Visual servoing systems for robotic manipulation typically require perception latencies below 33ms to
support 30Hz control loops [4].

Optimization Technique Analysis
Table 3 summarizes the impact of individual optimization techniques on the YOLOv5s model.

Table 3. Optimization Technique Impact on YOLOv5s

Technique Speedup Accuracy Retention Size Reduction
FP16 Conversion 2.0X 99.8% 50%
INT8 PTQ 3.0X 98.4% 75%
INT8 QAT 3.0X 99.2% 75%
Pruning (50%) 1.8X 98.0% 50%
Pruning + INT8 4.2X 97.1% 87%

Quantization-aware training (QAT) preserves 99.2% of baseline accuracy while achieving 3.0X speedup, outperforming
post-training quantization. Combined pruning and quantization achieves 4.2X speedup with 97.1% accuracy retention. The
results align with comprehensive surveys reporting 2-4X model compression and 20-80% computational savings through
quantization techniques [17].

Five-Stage Deployment Methodology

Based on patterns identified across successful edge Al deployments and established robotic system design principles [3],
we propose a systematic five-stage methodology: (1) Requirement Definition—establishing quantitative targets for latency,
accuracy, power, and memory; (2) Model Selection—choosing architectures from the accuracy-latency Pareto frontier;
(3) Optimization—applying quantization, pruning, and architecture modifications; (4) Hardware Alignment—configuring
inference frameworks for target hardware; and (5) System Integration—integrating optimized models with appropriate
scheduling and resource management.

Robotic System Integration

Effective edge Al deployment requires integration with broader robotic system architectures. The modular software
architecture for mobile manipulation systems described by Ghosh [3] provides a template where Al perception components
operate within timing contracts that preserve control loop determinism.

For manipulation tasks employing closed-loop grasping with visual servoing [4], edge Al enables the continuous perception
updates required for feedback control. Table 4 demonstrates achieved performance for a complete visual servoing pipeline.
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Table 4. Visual Servoing Pipeline Performance

Component Latency (ms) Target (ms)
Image Capture 2.1 <5

Object Detection 4.1 <10

Pose Estimation 6.2 <15

Grasp Planning 3.4 <10

Total Pipeline 15.8 <33

The total pipeline latency of 15.8ms supports 60Hz
perception updates, exceeding the 30Hz minimum for stable
visual servoing control. This performance level enables
the continuous grasp parameter recalculation during arm
motion described in closed-loop grasping techniques [4].

Power and Thermal Considerations

Edge deployment for mobile robots requires careful power
management. The Jetson AGX Orin’s configurable power
modes enable dynamic adaptation based on battery state and
thermal conditions. At 30W—half the maximum power—the
system still achieves 147 FPS for YOLOv5s INT8 inference,
sufficient for most robotic perception requirements while
extending operational duration for mobile platforms.

Discussion

The experimental results validate edge Al as a mature
technology for real-time robotic systems. Key findings
include: sub-10ms inference latency achievable for object
detection and pose estimation; quantization-aware training
preserving 99% of baseline accuracy while achieving
3X speedup; the five-stage deployment methodology
complementing established robotic software architecture
patterns [3]; and edge Al performance supporting visual
servoing control loops at 30-60Hz, enabling closed-loop
manipulation strategies [4].

Limitations include thermal management for sustained
operation, model-specific optimization requirements, and
the need for application-specific accuracy validation. Future
edge platforms including Jetson Thor promise further
performance improvements [7].

CONCLUSION

This paper presented a comprehensive analysis of edge
Al deployment for real-time robotic systems. Through
systematic evaluation of hardware platforms, optimization
techniques, and integration strategies, we demonstrated that
current edge computing technology enables Al inference at
latencies compatible with robotic control requirements.

Key findings include: (1) INT8 quantization achieves 3X
speedup with under 2% accuracy loss; (2) edge deployment
reduces inference latency by 10X compared to cloud
processing; (3) visual servoing pipelines achieve total
latencies under 20ms, supporting 30-60Hz control loops;
and (4) the five-stage deployment methodology provides
actionable guidance for practitioners.

For roboticists deploying Al capabilities on embedded
platforms, we recommend: prioritizing quantization-aware
training when accuracy margins permit; maintaining model
portfolios for runtime adaptation; integrating Al components
within modular architectures with explicit timing contracts;
and validating end-to-end system performance under
realistic operating conditions.

Future work will explore dynamic model selection based
on computational headroom, integration with emerging
hardware platforms, and automated optimization pipelines
that adapt to evolving model architectures.
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