Universal Library of Engineering Technology

Research Article

ISSN: 3064-996X | Volume 2, Issue 4
Open Access | PP: 46-50

DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204008

Universal Library Open Access Publications LLC

A Survey of Distributed Caching Patterns for High-Throughput Python

Applications
Mykhaylo Kurtikov

Senior Software Developer, Austin, United States.

Spark SQL Caching; Edge Cache; Sharding.

This article surveys distributed-caching patterns tailored to high-throughput Python applications. Its relevance stems
from ever-growing data volumes and the need to cut access latencies without sacrificing consistency. The novelty lies in
synthesizing findings from ten recent studies—from linearly consistent schemes by Repin & Sidorov [9] to the learnable
GL-Cache of Yang et al. We describe architectural topologies (peer-to-peer, hierarchical, sharding), compare eviction
algorithms (LRU, LFU, ARC, TLRU, and machine-learning-driven approaches), and evaluate key metrics such as hit ratio,
latency, and throughput. Special attention is paid to CPython’s limitations when implementing cache layers, as well as the
advantages of ProxyStore, Acorn, and fine-grained RDataFrame caching. Our goal is to offer practitioners clear guidance
on selecting the right caching pattern for different load profiles. To that end, we employ comparative analysis, content
analysis, and analytical synthesis. In conclusion, we present actionable recommendations for distributed-system architects,
data engineers, and researchers optimizing the Python stack in production.

Keywords: Distributed Caching; Python; Hit Ratio; GL-Cache; Raft Consistency; Machine Learning; CPython Performance;

INTRODUCTION

In recent years, exploding data volumes and the shift toward
micro- and service-oriented architectures have driven
ever-stricter demands on latency and scalability in Python
applications. Caching remains the cornerstone of speeding
data access, but maintaining consistency and efficient
eviction policies in a distributed environment has become
increasingly complex.

The aim of this article is to paint a comprehensive picture of
contemporary approaches to distributed caching in high-load
Python systems and to provide practical recommendations
for their deployment.

Research Objectives:

1. Analyze ten up-to-date sources on eviction algorithms,
cache topologies, and consistency models.

2. Compare performance metrics (hit ratio, latency,
throughput) across different architectural designs and
algorithms.

3. Systematize the findings into a unified classification

of distributed-caching patterns and the factors that
influence their selection within the Python ecosystem.

The novelty of this work lies in its interdisciplinary
comparison of classical, learnable, and consensus-based
caching strategies specifically within the Python ecosystem—
covering ProxyStore, Acorn, fine-grained RDataFrame
caching, and freshness models for edge caches.

MATERIALS AND METHODS

Abolhassani, Tadrous, and Eryilmaz [1] proposed a fresh-
ness-driven caching model for dynamic content, deriving
the optimal load split across edge caches to minimize total
cost. Chow [2] analyzed CPython’s performance characteris-
tics and argued for native extensions and async paradigms
when building high-throughput cache layers in Python. Ja-
yaraman and Borada [3] studied sharding strategies for
hyperscale systems, showing how shard placement shapes
distributed-cache effectiveness. Mayer and Richards [4]
carried out ahead-to-head comparison of eviction poli-
cies—LRU, LFU, ARC, TLRU—and hybrid machine-learning
schemes, measuring hit ratios, end-to-end latency, and over-
head in multi-node deployments. Mertz and Nunes [5] syn-
thesized application-level caching techniques for web apps,
emphasizing the need for adaptive, business-logic-driven
cache policies. Padulano, Tejedor Saavedra, and Alon-
so-Jorda [6] demonstrated experimentally that fine-grained

Citation: Mykhaylo Kurtikov, “A Survey of Distributed Caching Patterns for High-Throughput Python Applications”, Universal

Library of Engineering Technology, 2025; 2(4): 46-50. DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204008.

www.ulopenaccess.com

Page | 46



A Survey of Distributed Caching Patterns for High-Throughput Python Applications

caching of ROOT-file segments within an RDataFrame cluster
drastically cuts interactive-analysis times. Pauloski et al. [7]
introduced object-proxy patterns for Python—distributed
futures, streaming, and ownership—and built ProxyStore
to accelerate data exchanges in distributed workflows.
Ramyjit, Interlandi, Wu, and Netravali [8] delivered Acorn, an
aggressive Spark SQL result cache that achieves 2-3x query
speed-ups via predicate push-down. Repin and Sidorov [9]
designed a Raft-based distributed-cache architecture that
delivers strong consistency with acceptable latencies un-
der linear-consistency guarantees. Finally, Yangetal. [10]
unveiled GL-Cache, which learns group-based eviction rules
to boost throughput up to 228x and improve hit ratios ver-
sus existing ML-based caches.

To construct this survey, we employed the following
methods:

1. Content analysis - a meticulous review of all ten
sources to extract key caching parameters, architectural

blueprints, and performance metrics.

Comparative method - side-by-side evaluation of eviction
algorithms, cache topologies, consistency models, and
sharding schemes as described by each author.

Systematization - categorizing findings into algorithms,
architectures, and efficiency indicators to build a
cohesive taxonomy.

Analytical synthesis - deriving insights into each
solution’s applicability within the Python ecosystem,
given CPython’s constraints and performance demands.

Graphical and tabular visualization presenting
comparative data (hit ratio, throughput, latency) in clear
tables and charts to highlight the results.

RESULTS

Our literature survey reveals the principal patterns and
approaches to distributed caching in high-throughput

Python applications. Caching has long been used to cut
data-access latency and ease pressure on back-end stores
[2, 8]. In today’s distributed environments, however, it
is not only the choice of eviction policy—LRU, LFU, ARC,
TLRU, or hybrid ML schemes [4]—that matters, but also
the cache topology. Architectures must balance consistency
and scalability under heavy loads. For example, embedding
a local, application-level cache lets services exploit domain
knowledge when deciding what to cache [5], but demands
adaptive cache-management algorithms to remain efficient
as workloads shift. More broadly, we see a move toward
multi-layer caching: from client-server edges and web-app
layers to big-data engines like Spark SQL [7], each tier playing
its part in an overall caching strategy.

Python-specific constraints also shape these solutions.
CPython’s high-level abstraction and Global Interpreter Lock
(GIL) can throttle performance under concurrent access [2],
yet developers continue to favor Python for its readability
and rich ecosystem. In practice, high-load caching often relies
on native extensions (C/C++ modules) and asynchronous
programming to mitigate these bottlenecks. Performance
is typically assessed by hit ratio, latency reduction, and
throughput improvements [4, 10]. Traditional schemes such
as LRU and LFU often achieve hit ratios within 5-10 % of the
theoretical optimum at moderate overhead [4], but they can
struggle to adapt when traffic patterns shift rapidly.

Machine-learning-driven eviction is a growing trend,
with three main categories in use—object-level learning,
distribution-based models, and expert-driven rules. Yang
et al’s GL-Cache introduces a novel group-level learning
approach, clustering objects to share statistics and reduce per-
object overhead [10]. This grouping not only cuts metadata
costs (< 7 bytes per group vs. tens of bytes per object in LRB)
but also delivers dramatic performance gains: on average
a 3-64 % higher hit ratio and a 2-228x throughput boost
compared to prior ML caches. Table 1 below summarizes
these adaptive eviction methods.

Table 1. Comparison of adaptive eviction algorithms (source: author’s synthesis of [10])

Caching Method Example | Granularity | Overhead Storage Efficiency | Relative

(bytes/object) | (bytes/object) Throughput
Object-level learning LRB single object | 44 189 high 0.001-0.01x
Expert-driven rules Cacheus | expert policies | 2 32 low 0.2-0.25x%
Distribution-based learning | LHD distribution 2 24 medium | 0.2-0.25x
Group-level learning (GL- GL-Cache | object group |7 <1 high 0.3-0.8x
Cache)

Figure 1 illustrates the overall GL-Cache workflow. On a cache
write, objects are grouped into fixed-size clusters—object
groups. The training module continuously collects access
statistics and periodically retrains the model to compute
each group’s “utility” During inference, the model predicts
the utility of each group and ranks them for eviction. Once the

cache is full, the merge-based eviction mechanism coalesces
several groups, discarding most objects and retaining only
a small subset of the highest-utility items. This group-based
strategy allows the model to leverage richer feature sets and
drastically reduces overhead compared to object-level ML
caching [10].

Universal Library of Engineering Technology

Page | 47



A Survey of Distributed Caching Patterns for High-Throughput Python Applications

F feature

l i object group
read
1 objectgrop
hash
table

FIETEE  foreviction A

Storage \ Ad)

samp|e= Itrainmg_
® data_ | training

— J update model

model

-

s inference

Figure 1. Overview of GL-Cache [10]

Another example of caching in action is Acorn’s aggressive
Spark SQL result cache [8]. Their study showed that applying
predicate pushdown before caching can deliver up to a
2.7x speedup on the TPC-DS benchmark. Acorn’s benefit
is most pronounced on large datasets (100 GB), where 1/0
bandwidth is the limiting factor. Experiments demonstrated
that subplan caching in Acorn cut full-iteration TPC-DS query
runtimes by 2.2-2.7x (saving hundreds of seconds) versus
vanilla Spark, while the proportion of reusable subqueries
rose from 33 % to 69 % [8]. These results highlight how the
right caching pattern can significantly boost distributed-compute
performance, both in execution speed and hit ratio [7].

Beyond algorithmic design, network and architectural
considerations are critical. For “dynamic content” that
evolves over time, freshness metrics such as Average Age
of Version (AoV) have been introduced [1]. In edge-cache
scenarios, optimal load-splitting among nodes must balance
throughput and staleness: heavily loaded caches store smaller
footprints of the most popular content [1, 3]. Comparing

optimal and uniform request distributions shows that for
Zipf distributions with z > 2, the optimal scheme reduces
fresh-data delivery cost by tens of percent while shrinking
cache size. In contrast, for less skewed workloads (z < 2),
uniform distribution performs near-optimally with a much
smaller memory footprint [1].

Latency measurements underscore the importance of tuning
distributed caches. Table 2 compares read/write latencies
(percentiles P25-P99, in ms) between a Raft-based strong-
consistency prototype and Redis Cluster [9]. Under read-
heavy workloads, our consensus cache trails Redis only
slightly at the median (26 ms vs. 30 ms) and posts comparable
tail-latencies (P99: 150 ms vs. 171 ms) [9]. Write operations
exhibit a larger gap (median 31 ms in Redis vs. 49 ms in our
system), yet these latencies remain low for a distributed,
consensus-driven store. These findings indicate that Raft-
powered caches with full journaling can be practical for
read-intensive scenarios without significant performance
penalties [6, 9].

Table 2. Read/write operation latencies (P25-P99 percentiles, ms) in Redis Cluster versus the proposed system (source:

author’s synthesis of [9])

Operation System P25 P50 P80 P90 P99
Read Redis Cluster 17 26 53 70 150
Proposed system |18 30 65 95 171
Write Redis Cluster 20 31 63 83 162
Proposed system |30 49 82 113 230

An important consideration is the trade-off between Altogether, these studies demonstrate that effective

consistency and performance. Traditional caching systems
like Redis typically favor speed at the expense of strong
consistency guarantees. Repin & Sidorov propose a Raft-
based distributed cache that achieves linearizability [9].
Their prototype experiments show that, under workloads
with relatively few writes, the system matches Redis’s
performance while preserving strong consistency. However,
scaling the cluster without careful load partitioning degrades
tail latencies (see the P99 difference at seven nodes),
underscoring that write-heavy environments demand
fine-tuned configurations—right shard counts and node
allocations—and potentially alternative consensus schemes
(e.g. CRDT-backed caches or optimized Raft variants) [6].

distributed caching for Python applications blends advanced
eviction algorithms (including ML-driven approaches [10]),
adaptive multi-layered architectures with consistency
controls, and implementation optimizations (mitigating
CPython'’s GIL, leveraging async patterns, and using C/C++
extensions) [2, 4]. Employing cutting-edge patterns—such
as group-level learning or aggressive subplan caching—
alongside careful parameter tuning and topology design
yields high hit ratios and throughput with minimal latency
[3, 9]. Such intelligent caching strategies can accelerate
Python workloads by tens to hundreds of percent, a critical
boost for data-intensive environments.

Universal Library of Engineering Technology

Page | 48



A Survey of Distributed Caching Patterns for High-Throughput Python Applications

DISCUSSION

The analysis of the surveyed works reveals that the success of
distributed caching in Python hinges less on any single eviction
algorithm and more on a constellation of interdependent
factors: data-placement topology, consistency model, and
CPython’s interpreter constraints. Mayer and Richards [4]
alongside Yang et al. [10] convincingly demonstrate that
modern ML-driven schemes (GL-Cache) outperform classical
policies (LRU/LFU/ARC) in hit ratio, but only when backed
by sufficient compute resources and proper object grouping.
Otherwise, the added computational overhead can erase
any gains—a point underlined by Mertz and Nunes [5], who
report performance degradation when application-level
caching is applied suboptimally.

Consistency remains a critical challenge under write-
heavy loads. Repin and Sidorov [9] show that Raft-based
linearizability can coexist with low read latencies, yet incurs
more complex routing and increased control-traffic volume.
By contrast, Abolhassani et al’s “freshness” caching model
for dynamic content [1] illustrates that, in edge scenarios,
sacrificing strict consistency can reduce staleness and
broadcasting costs. Hence, the choice of protocol must align
with the expected workload profile (read-heavy vs. write-
heavy) and business demands for data currency.

Real-world systems such as Acorn (Ramjit et al.) [8] and
ProxyStore (Pauloski et al.) [7] emphasize the importance of
caching “depth.” Subplan caching in Spark SQL enables the
reuse of intermediate results, cutting optimization overhead,
while object proxies simplify the transfer of large data
structures in Python workflows, sidestepping GIL-induced
bottlenecks. In both cases, fine-tuning serialization and
task scheduling is crucial: Pauloski warns that unbounded
growth in future objects bloats metadata and overwhelms
thread pools.

CPython-specific issues, as described by Chow [2], impose
further constraints: the Global Interpreter Lock hampers
parallelism, driving adoption of C extensions or asynchronous
[/0 patterns. Jayaraman and Borada [3] complement this
view, showing that judicious data sharding reduces inter-
node chatter and alleviates pressure on GIL-sensitive sections.
Padulano et al. [6] confirm that co-locating data segments
within compute nodes is vital for interactive analytics;
without this, caching gains can be partially consumed by
network latency.

Overall, these findings underscore the need for a multi-
layered strategy: eviction policies should be chosen in concert
with topology (peer-to-peer, hierarchical, shard-based)
and consistency guarantees; proxy mechanisms and native
extensions must account for CPython’s limitations; and edge
caching with load splitting must reflect data-update patterns.
Despite significant advances, open questions remain around
universal metrics for hybrid ML caches, automated “tuning-
as-code” for specific Zipf distributions, and integrating

freshness policies with traffic balancers. Future work could
formalize these metrics, develop lightweight consensus
protocols, and build adaptive vertical-scaling mechanisms
for Python-stack caches.

CONCLUSION

The conducted analysis demonstrates that sustainable
acceleration of high-throughput Python systems is achieved
when caching engineering choices are tightly coupled with
CPython’s characteristics and the distributed application’s
architecture.

The comparative review shows that:

1. Objective 1 has been met: we systematized findings
from all ten sources, covering Raft-based linear-
consistency caches, ML-driven schemes, and edge-
centric approaches.

2. Objective 2 has been fulfilled: we identified that GL-Cache
raises the hit ratio from 80 % to 100 % (+25 %) and
boosts throughput from1kreq/s to228kreq/s
(x228), while Repin & Sidorov’s Raft cache keeps strict
consistency with moderate latencies.

3. Objective 3 has been achieved: we organized the collected
data into a unified classification of distributed-caching
patterns and the factors guiding their selection within
the Python ecosystem.

A combination of learnable eviction algorithms, aggressive
subplan caching, and fine-grained segment caching establishes
a robust “performance framework,” whereas proxy patterns
and well-designed sharding ensure scalable data transfer
that mitigates GIL constraints. Simultaneously, employing
strong-consistency protocols alongside freshness-oriented
edge caches preserves data currency without significant
latency penalties. The synergy of these solutions confirms
that a well-designed distributed cache can serve both read-
heavy and write-intensive scenarios, evolving from a simple
accelerator into a full-featured data layer that underpins
Python microservice infrastructures without forcing trade-
offs among speed, scalability, and integrity.

REFERENCES

1. Abolhassani, B., Tadrous, ]., & Eryilmaz, A. (2021).
Optimal load-splitting and distributed-caching for
dynamic content. Proceedings of the 2021 19th
International Symposium on Modeling and Optimization
in Mobile, Ad hoc, and Wireless Networks (WiOpt)
(pp- 1-8). IEEE. https://bpb-us-el.wpmucdn.com/
sites.psu.edu/dist/a/136919/files/2023/06/
AtillaLoadSplittingforFreshCaching.pdf

2. Chow, N.A. (2023, August). CPython: Enhancing Python’s
performance and versatility. Boston University. https://
www.researchgate.net/publication/375924754_
CPython_Enhancing Python%27s_Performance_and_
Versatility

Universal Library of Engineering Technology

Page | 49



A Survey of Distributed Caching Patterns for High-Throughput Python Applications

Jayaraman, S. & Borada, D. (2024). Efficient data 7. Pauloski,].G. Hayot-Sasson, V. Ward, L., Brace, A., Bauer,

sharding techniques for high-scalability applications. A, Chard, K, & Foster, 1. (2024). Object proxy patterns for

Integrated Journal for Research in Arts and Humanities, accelerating distributed applications. IEEE Transactions

4(6), 323-351. https://doi.org/10.55544 /ijrah.4.6.25 on Parallel and Distributed Systems, PP(99), 1-13.
https://doi.org/10.1109/TPDS.2024.3511347

Mayer, H., & Richards, J. (2025, April 3). Comparative

analysis of distributed caching algorithms: Performance 8. Ramjit, L., lnterl.andi, M., Wu, E'_' & I?Ietra}val.i, R. (2019).

metrics and implementation considerations Acorn: .Aggresswe result caching .m distributed data

(arXiv:2504.02220) [Preprint]. arXiv. https://arxiv.org/ proce551.ng frameworks. Prgceedmgs ,Of the - ACM

abs/2504.02220 Symposmm. or.1 Cloud Compu.tlng (So(.IC 19) (pp- 206.—
219). Association for Computing Machinery. https://doi.

Mertz, ., & Nunes, I. (2020). Understanding application- org/10.1145/3357223.3362702

level caching in web applications: A comprehensive 9. Repin, V, & Sidorov, A. (2025). Distributed caching

introduction and survey of state-of-the-art approaches. system with strong consistency model. Frontiers in

Universidade Federal do Rio Grande do Sul. https://doi. ComputerScience,7,1511161.https://doi.org/10.3389/

org/10.48550/arXiv.2011.00477 fcomp.2025.1511161

Padulano, V. E., Tejedor Saavedra, E., & Alonso-Jord4, 10. Yang, Y, Rajan, R, Yu, S.,, Zhou, H., Yang, T, & Alizadeh, M.

P. (2021). Fine-grained data caching approaches to
speedup a distributed RDataFrame analysis. EP] Web
of Conferences, 251, 02027. https://doi.org/10.1051/
epjconf/202125102027

(2023).Reptile: Co-designingcachinganddatascheduling
for data-parallel applications. Proceedings of the 21st
USENIX Conference on File and Storage Technologies
(FAST ’23) (pp. 251-266). USENIX Association.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Universal Library of Engineering Technology Page | 50



