
Page | 46www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 4

Open Access | PP: 46-50

DOI: https://doi.org/10.70315/uloap.ulete.2025.0204008

Universal Library of Engineering Technology Research Article

A Survey of Distributed Caching Patterns for High-Throughput Python 
Applications
Mykhaylo Kurtikov
Senior Software Developer, Austin, United States.

This article surveys distributed-caching patterns tailored to high-throughput Python applications. Its relevance stems 
from ever-growing data volumes and the need to cut access latencies without sacrificing consistency. The novelty lies in 
synthesizing findings from ten recent studies—from linearly consistent schemes by Repin & Sidorov [9] to the learnable 
GL-Cache of Yang et al. We describe architectural topologies (peer-to-peer, hierarchical, sharding), compare eviction 
algorithms (LRU, LFU, ARC, TLRU, and machine-learning–driven approaches), and evaluate key metrics such as hit ratio, 
latency, and throughput. Special attention is paid to CPython’s limitations when implementing cache layers, as well as the 
advantages of ProxyStore, Acorn, and fine-grained RDataFrame caching. Our goal is to offer practitioners clear guidance 
on selecting the right caching pattern for different load profiles. To that end, we employ comparative analysis, content 
analysis, and analytical synthesis. In conclusion, we present actionable recommendations for distributed-system architects, 
data engineers, and researchers optimizing the Python stack in production.

Keywords: Distributed Caching; Python; Hit Ratio; GL-Cache; Raft Consistency; Machine Learning; CPython Performance; 
Spark SQL Caching; Edge Cache; Sharding.

Abstract

Citation: Mykhaylo Kurtikov, “A Survey of Distributed Caching Patterns for High-Throughput Python Applications”, Universal 
Library of Engineering Technology, 2025; 2(4): 46-50. DOI: https://doi.org/10.70315/uloap.ulete.2025.0204008.

INTRODUCTION
In recent years, exploding data volumes and the shift toward 
micro- and service-oriented architectures have driven 
ever-stricter demands on latency and scalability in Python 
applications. Caching remains the cornerstone of speeding 
data access, but maintaining consistency and efficient 
eviction policies in a distributed environment has become 
increasingly complex.

The aim of this article is to paint a comprehensive picture of 
contemporary approaches to distributed caching in high-load 
Python systems and to provide practical recommendations 
for their deployment.

Research Objectives:

Analyze ten up-to-date sources on eviction algorithms, 1.	
cache topologies, and consistency models.

Compare performance metrics (hit ratio, latency, 2.	
throughput) across different architectural designs and 
algorithms.

Systematize the findings into a unified classification 3.	
of distributed-caching patterns and the factors that 
influence their selection within the Python ecosystem.

The novelty of this work lies in its interdisciplinary 
comparison of classical, learnable, and consensus-based 
caching strategies specifically within the Python ecosystem—
covering ProxyStore, Acorn, fine-grained RDataFrame 
caching, and freshness models for edge caches.

MATERIALS AND METHODS
Abolhassani, Tadrous, and Eryilmaz [1] proposed a fresh-
ness‑driven caching model for dynamic content, deriving 
the optimal load split across edge caches to minimize total 
cost. Chow [2] analyzed CPython’s performance characteris-
tics and argued for native extensions and async paradigms 
when building high‑throughput cache layers in Python. Ja-
yaraman and Borada [3] studied sharding strategies for 
hyperscale systems, showing how shard placement shapes 
distributed‑cache effectiveness. Mayer and Richards [4] 
carried out a head‑to‑head comparison of eviction poli-
cies—LRU, LFU, ARC, TLRU—and hybrid machine‑learning 
schemes, measuring hit ratios, end‑to‑end latency, and over-
head in multi‑node deployments. Mertz and Nunes [5] syn-
thesized application‑level caching techniques for web apps, 
emphasizing the need for adaptive, business‑logic‑driven 
cache policies. Padulano, Tejedor Saavedra, and Alon-
so‑Jordá [6] demonstrated experimentally that fine‑grained 



Page | 47Universal Library of Engineering Technology

A Survey of Distributed Caching Patterns for High-Throughput Python Applications

caching of ROOT‑file segments within an RDataFrame cluster 
drastically cuts interactive‑analysis times. Pauloski et al. [7] 
introduced object‑proxy patterns for Python—distributed 
futures, streaming, and ownership—and built ProxyStore 
to accelerate data exchanges in distributed workflows. 
Ramjit, Interlandi, Wu, and Netravali [8] delivered Acorn, an 
aggressive Spark SQL result cache that achieves 2–3× query 
speed‑ups via predicate push‑down. Repin and Sidorov [9] 
designed a Raft‑based distributed‑cache architecture that 
delivers strong consistency with acceptable latencies un-
der linear‑consistency guarantees. Finally, Yang et al. [10] 
unveiled GL‑Cache, which learns group‑based eviction rules 
to boost throughput up to 228× and improve hit ratios ver-
sus existing ML‑based caches.

To construct this survey, we employed the following 
methods:

Content analysis – a meticulous review of all ten 1.	
sources to extract key caching parameters, architectural 
blueprints, and performance metrics.

Comparative method – side-by-side evaluation of eviction 2.	
algorithms, cache topologies, consistency models, and 
sharding schemes as described by each author.

Systematization – categorizing findings into algorithms, 3.	
architectures, and efficiency indicators to build a 
cohesive taxonomy.

Analytical synthesis – deriving insights into each 4.	
solution’s applicability within the Python ecosystem, 
given CPython’s constraints and performance demands.

Graphical and tabular visualization – presenting 5.	
comparative data (hit ratio, throughput, latency) in clear 
tables and charts to highlight the results.

RESULTS

Our literature survey reveals the principal patterns and 
approaches to distributed caching in high-throughput 

Python applications. Caching has long been used to cut 
data‐access latency and ease pressure on back‐end stores 
[2, 8]. In today’s distributed environments, however, it 
is not only the choice of eviction policy—LRU, LFU, ARC, 
TLRU, or hybrid ML schemes [4]—that matters, but also 
the cache topology. Architectures must balance consistency 
and scalability under heavy loads. For example, embedding 
a local, application‐level cache lets services exploit domain 
knowledge when deciding what to cache [5], but demands 
adaptive cache‐management algorithms to remain efficient 
as workloads shift. More broadly, we see a move toward 
multi‐layer caching: from client–server edges and web‐app 
layers to big‐data engines like Spark SQL [7], each tier playing 
its part in an overall caching strategy.

Python‐specific constraints also shape these solutions. 
CPython’s high‐level abstraction and Global Interpreter Lock 
(GIL) can throttle performance under concurrent access [2], 
yet developers continue to favor Python for its readability 
and rich ecosystem. In practice, high-load caching often relies 
on native extensions (C/C++ modules) and asynchronous 
programming to mitigate these bottlenecks. Performance 
is typically assessed by hit ratio, latency reduction, and 
throughput improvements [4, 10]. Traditional schemes such 
as LRU and LFU often achieve hit ratios within 5–10 % of the 
theoretical optimum at moderate overhead [4], but they can 
struggle to adapt when traffic patterns shift rapidly.

Machine-learning–driven eviction is a growing trend, 
with three main categories in use—object-level learning, 
distribution-based models, and expert-driven rules. Yang 
et al.’s GL-Cache introduces a novel group-level learning 
approach, clustering objects to share statistics and reduce per-
object overhead [10]. This grouping not only cuts metadata 
costs (≤ 7 bytes per group vs. tens of bytes per object in LRB) 
but also delivers dramatic performance gains: on average 
a 3–64 % higher hit ratio and a 2–228× throughput boost 
compared to prior ML caches. Table 1 below summarizes 
these adaptive eviction methods.

Table 1. Comparison of adaptive eviction algorithms (source: author’s synthesis of [10])

Caching Method Example Granularity Overhead 
(bytes/object)

Storage 
(bytes/object)

Efficiency Relative 
Throughput

Object-level learning LRB single object 44 189 high 0.001–0.01×

Expert-driven rules Cacheus expert policies 2 32 low 0.2–0.25×

Distribution-based learning LHD distribution 2 24 medium 0.2–0.25×

Group-level learning (GL-
Cache)

GL-Cache object group 7 < 1 high 0.3–0.8×

Figure 1 illustrates the overall GL-Cache workflow. On a cache 
write, objects are grouped into fixed-size clusters—object 
groups. The training module continuously collects access 
statistics and periodically retrains the model to compute 
each group’s “utility.” During inference, the model predicts 
the utility of each group and ranks them for eviction. Once the 

cache is full, the merge-based eviction mechanism coalesces 
several groups, discarding most objects and retaining only 
a small subset of the highest-utility items. This group-based 
strategy allows the model to leverage richer feature sets and 
drastically reduces overhead compared to object-level ML 
caching [10].



Page | 48Universal Library of Engineering Technology

A Survey of Distributed Caching Patterns for High-Throughput Python Applications

Figure 1. Overview of GL-Cache [10]

Another example of caching in action is Acorn’s aggressive 
Spark SQL result cache [8]. Their study showed that applying 
predicate pushdown before caching can deliver up to a 
2.7× speedup on the TPC-DS benchmark. Acorn’s benefit 
is most pronounced on large datasets (100 GB), where I/O 
bandwidth is the limiting factor. Experiments demonstrated 
that subplan caching in Acorn cut full-iteration TPC-DS query 
runtimes by 2.2–2.7× (saving hundreds of seconds) versus 
vanilla Spark, while the proportion of reusable subqueries 
rose from 33 % to 69 % [8]. These results highlight how the 
right caching pattern can significantly boost distributed-compute 
performance, both in execution speed and hit ratio [7].

Beyond algorithmic design, network and architectural 
considerations are critical. For “dynamic content” that 
evolves over time, freshness metrics such as Average Age 
of Version (AoV) have been introduced [1]. In edge-cache 
scenarios, optimal load-splitting among nodes must balance 
throughput and staleness: heavily loaded caches store smaller 
footprints of the most popular content [1, 3]. Comparing 

optimal and uniform request distributions shows that for 
Zipf distributions with z > 2, the optimal scheme reduces 
fresh-data delivery cost by tens of percent while shrinking 
cache size. In contrast, for less skewed workloads (z < 2), 
uniform distribution performs near-optimally with a much 
smaller memory footprint [1].

Latency measurements underscore the importance of tuning 
distributed caches. Table 2 compares read/write latencies 
(percentiles P25–P99, in ms) between a Raft-based strong-
consistency prototype and Redis Cluster [9]. Under read-
heavy workloads, our consensus cache trails Redis only 
slightly at the median (26 ms vs. 30 ms) and posts comparable 
tail-latencies (P99: 150 ms vs. 171 ms) [9]. Write operations 
exhibit a larger gap (median 31 ms in Redis vs. 49 ms in our 
system), yet these latencies remain low for a distributed, 
consensus-driven store. These findings indicate that Raft-
powered caches with full journaling can be practical for 
read-intensive scenarios without significant performance 
penalties [6, 9].

Table 2. Read/write operation latencies (P25–P99 percentiles, ms) in Redis Cluster versus the proposed system (source: 
author’s synthesis of [9])

Operation System P25 P50 P80 P90 P99
Read Redis Cluster 17 26 53 70 150

Proposed system 18 30 65 95 171
Write Redis Cluster 20 31 63 83 162

Proposed system 30 49 82 113 230

An important consideration is the trade-off between 
consistency and performance. Traditional caching systems 
like Redis typically favor speed at the expense of strong 
consistency guarantees. Repin & Sidorov propose a Raft-
based distributed cache that achieves linearizability [9]. 
Their prototype experiments show that, under workloads 
with relatively few writes, the system matches Redis’s 
performance while preserving strong consistency. However, 
scaling the cluster without careful load partitioning degrades 
tail latencies (see the P99 difference at seven nodes), 
underscoring that write-heavy environments demand 
fine-tuned configurations—right shard counts and node 
allocations—and potentially alternative consensus schemes 
(e.g. CRDT-backed caches or optimized Raft variants) [6].

Altogether, these studies demonstrate that effective 
distributed caching for Python applications blends advanced 
eviction algorithms (including ML-driven approaches [10]), 
adaptive multi-layered architectures with consistency 
controls, and implementation optimizations (mitigating 
CPython’s GIL, leveraging async patterns, and using C/C++ 
extensions) [2, 4]. Employing cutting-edge patterns—such 
as group-level learning or aggressive subplan caching—
alongside careful parameter tuning and topology design 
yields high hit ratios and throughput with minimal latency 
[3, 9]. Such intelligent caching strategies can accelerate 
Python workloads by tens to hundreds of percent, a critical 
boost for data-intensive environments.



Page | 49Universal Library of Engineering Technology

A Survey of Distributed Caching Patterns for High-Throughput Python Applications

DISCUSSION
The analysis of the surveyed works reveals that the success of 
distributed caching in Python hinges less on any single eviction 
algorithm and more on a constellation of interdependent 
factors: data-placement topology, consistency model, and 
CPython’s interpreter constraints. Mayer and Richards [4] 
alongside Yang et al. [10] convincingly demonstrate that 
modern ML-driven schemes (GL-Cache) outperform classical 
policies (LRU/LFU/ARC) in hit ratio, but only when backed 
by sufficient compute resources and proper object grouping. 
Otherwise, the added computational overhead can erase 
any gains—a point underlined by Mertz and Nunes [5], who 
report performance degradation when application-level 
caching is applied suboptimally.

Consistency remains a critical challenge under write-
heavy loads. Repin and Sidorov [9] show that Raft-based 
linearizability can coexist with low read latencies, yet incurs 
more complex routing and increased control-traffic volume. 
By contrast, Abolhassani et al.’s “freshness” caching model 
for dynamic content [1] illustrates that, in edge scenarios, 
sacrificing strict consistency can reduce staleness and 
broadcasting costs. Hence, the choice of protocol must align 
with the expected workload profile (read-heavy vs. write-
heavy) and business demands for data currency.

Real-world systems such as Acorn (Ramjit et al.) [8] and 
ProxyStore (Pauloski et al.) [7] emphasize the importance of 
caching “depth.” Subplan caching in Spark SQL enables the 
reuse of intermediate results, cutting optimization overhead, 
while object proxies simplify the transfer of large data 
structures in Python workflows, sidestepping GIL-induced 
bottlenecks. In both cases, fine-tuning serialization and 
task scheduling is crucial: Pauloski warns that unbounded 
growth in future objects bloats metadata and overwhelms 
thread pools.

CPython-specific issues, as described by Chow [2], impose 
further constraints: the Global Interpreter Lock hampers 
parallelism, driving adoption of C extensions or asynchronous 
I/O patterns. Jayaraman and Borada [3] complement this 
view, showing that judicious data sharding reduces inter-
node chatter and alleviates pressure on GIL-sensitive sections. 
Padulano et al. [6] confirm that co-locating data segments 
within compute nodes is vital for interactive analytics; 
without this, caching gains can be partially consumed by 
network latency.

Overall, these findings underscore the need for a multi-
layered strategy: eviction policies should be chosen in concert 
with topology (peer-to-peer, hierarchical, shard-based) 
and consistency guarantees; proxy mechanisms and native 
extensions must account for CPython’s limitations; and edge 
caching with load splitting must reflect data-update patterns. 
Despite significant advances, open questions remain around 
universal metrics for hybrid ML caches, automated “tuning-
as-code” for specific Zipf distributions, and integrating 

freshness policies with traffic balancers. Future work could 
formalize these metrics, develop lightweight consensus 
protocols, and build adaptive vertical-scaling mechanisms 
for Python-stack caches.

CONCLUSION
The conducted analysis demonstrates that sustainable 
acceleration of high-throughput Python systems is achieved 
when caching engineering choices are tightly coupled with 
CPython’s characteristics and the distributed application’s 
architecture.

The comparative review shows that:

Objective 1 has been met: we systematized findings 1.	
from all ten sources, covering Raft-based linear-
consistency caches, ML-driven schemes, and edge-
centric approaches.

Objective 2 has been fulfilled: we identified that GL‑Cache 2.	
raises the hit ratio from 80 % to 100 % (+25 %) and 
boosts throughput from 1 k req/s to 228 k req/s 
(×228), while Repin & Sidorov’s Raft cache keeps strict 
consistency with moderate latencies.

Objective 3 has been achieved: we organized the collected 3.	
data into a unified classification of distributed-caching 
patterns and the factors guiding their selection within 
the Python ecosystem.

A combination of learnable eviction algorithms, aggressive 
subplan caching, and fine-grained segment caching establishes 
a robust “performance framework,” whereas proxy patterns 
and well-designed sharding ensure scalable data transfer 
that mitigates GIL constraints. Simultaneously, employing 
strong-consistency protocols alongside freshness-oriented 
edge caches preserves data currency without significant 
latency penalties. The synergy of these solutions confirms 
that a well-designed distributed cache can serve both read-
heavy and write-intensive scenarios, evolving from a simple 
accelerator into a full-featured data layer that underpins 
Python microservice infrastructures without forcing trade-
offs among speed, scalability, and integrity.

REFERENCES
Abolhassani, B., Tadrous, J., & Eryilmaz, A. (2021). 1.	
Optimal load-splitting and distributed-caching for 
dynamic content. Proceedings of the 2021 19th 
International Symposium on Modeling and Optimization 
in Mobile, Ad hoc, and Wireless Networks (WiOpt) 
(pp. 1–8). IEEE. https://bpb-us-e1.wpmucdn.com/
si tes .psu .edu/dist/a/136919/f i les/2023/06/
AtillaLoadSplittingforFreshCaching.pdf

Chow, N. A. (2023, August). CPython: Enhancing Python’s 2.	
performance and versatility. Boston University. https://
www.researchgate.net/publication/375924754_
CPython_Enhancing_Python%27s_Performance_and_
Versatility



Page | 50Universal Library of Engineering Technology

A Survey of Distributed Caching Patterns for High-Throughput Python Applications

Jayaraman, S., & Borada, D. (2024). Efficient data 3.	
sharding techniques for high-scalability applications. 
Integrated Journal for Research in Arts and Humanities, 
4(6), 323–351. https://doi.org/10.55544/ijrah.4.6.25

Mayer, H., & Richards, J. (2025, April 3). Comparative 4.	
analysis of distributed caching algorithms: Performance 
metrics and implementation considerations 
(arXiv:2504.02220) [Preprint]. arXiv. https://arxiv.org/
abs/2504.02220

Mertz, J., & Nunes, I. (2020). Understanding application-5.	
level caching in web applications: A comprehensive 
introduction and survey of state-of-the-art approaches. 
Universidade Federal do Rio Grande do Sul. https://doi.
org/10.48550/arXiv.2011.00477

Padulano, V. E., Tejedor Saavedra, E., & Alonso-Jordá, 6.	
P. (2021). Fine-grained data caching approaches to 
speedup a distributed RDataFrame analysis. EPJ Web 
of Conferences, 251, 02027. https://doi.org/10.1051/
epjconf/202125102027

Pauloski, J. G., Hayot-Sasson, V., Ward, L., Brace, A., Bauer, 7.	
A., Chard, K., & Foster, I. (2024). Object proxy patterns for 
accelerating distributed applications. IEEE Transactions 
on Parallel and Distributed Systems, PP(99), 1–13. 
https://doi.org/10.1109/TPDS.2024.3511347

Ramjit, L., Interlandi, M., Wu, E., & Netravali, R. (2019). 8.	
Acorn: Aggressive result caching in distributed data 
processing frameworks. Proceedings of the ACM 
Symposium on Cloud Computing (SoCC ’19) (pp. 206–
219). Association for Computing Machinery. https://doi.
org/10.1145/3357223.3362702

Repin, V., & Sidorov, A. (2025). Distributed caching 9.	
system with strong consistency model. Frontiers in 
Computer Science, 7, 1511161. https://doi.org/10.3389/
fcomp.2025.1511161

Yang, Y., Rajan, R., Yu, S., Zhou, H., Yang, T., & Alizadeh, M. 10.	
(2023). Reptile: Co-designing caching and data scheduling 
for data-parallel applications. Proceedings of the 21st 
USENIX Conference on File and Storage Technologies 
(FAST ’23) (pp. 251–266). USENIX Association.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


