
Page | 100www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 3

Open Access | PP: 100-104

DOI: https://doi.org/10.70315/uloap.ulete.2025.0203018

Universal Library of Engineering Technology Research Article

Ensuring the Security of Serverless Applications Using the Zero Trust 
Approach
Yevhen Mykhailenko
Software Engineer, PayPal (by Accelon Inc.), Austin, Texas, US.

The article examines the problem of securing serverless applications amid the rapid spread of cloud-native approaches 
and organizations’ transition to the code as a function model. The study aims to identify key threats arising from the use 
of serverless architectures and to justify the application of the Zero Trust concept as a foundational protection model. 
The topic’s relevance is determined by the diminishing efficiency of classic methods of perimeter security because of the 
ephemeral nature of the function, high speed of deployment, and distributed infrastructure character. The novelty of the 
paper includes carrying out a systematization of attack vectors in serverless environments and developing a holistic scheme 
for the application of Zero Trust at all stages of the application life cycle- starting from design and build up to running and 
monitoring. The analysis has proven that the major vulnerabilities in the serverless model are within identity and access 
management misconfigurations, an insecure supply chain, and event trigger exploitation. There is an overwhelming presence 
of both excessive privileges and vulnerable configurations. Make Zero Trust is an objective necessity. In practice, enforce 
multi-factor authentication and least-privilege design right from the design stage as signed artifacts cryptographically 
at build time, strict isolation, and egress control at runtime, plus continuous monitoring with automated response at the 
operations level. This set of measures makes it possible to localize threats and maintain application resilience without 
sacrificing flexibility and scalability. The article will be helpful to researchers in cloud security, practicing architects, and 
DevSecOps engineers, as well as executives making decisions about adopting modern protection models.

Keywords: Serverless, Zero Trust, Cloud Security, Identity and Access, Supply Chain, Vulnerabilities, DevSecOps.

Abstract

Citation: Yevhen Mykhailenko, “Ensuring the Security of Serverless Applications Using the Zero Trust Approach”, Universal 
Library of Engineering Technology, 2025; 2(3): 100-104. DOI: https://doi.org/10.70315/uloap.ulete.2025.0203018.

Introduction
Serverless architectures, which have become an integral 
part of cloud transformation, have already moved from the 
exotic category to the de facto standard: according to the 
Cloud Native Computing Foundation, in 2024 the share of 
organizations applying cloud-native approaches reached 
89%, and functions and managed events are among the 
top three most in-demand technologies (Silverthorne & 
Hendrick, 2025). Gartner analysts predict that by the end 
of 2025, the use of serverless will become routine practice 
for more than half of global companies versus 30% a year 
earlier, meaning growth of about 20 percentage points in 
a single year, underscoring the rapid spread of the code as 
a function model (Kasthuri et al., 2024). This popularity is 
understandable: scale-to-load behavior, per-minute billing, 
and the absence of OS maintenance duties radically accelerate 
time-to-market and reduce operational costs.

However, benefits bring a new logic of risk. The ephemeral 
nature of runtime containers, trigger-driven architecture, 
and tight integration with managed services minimize classic 

zonal defense. There are no stable IP segments to surround 
with a firewall, no long-lived machines where protection 
agents function correctly, and access control shifts entirely 
toward IAM roles and temporary tokens. Paradoxically, the 
same set of advantages that make serverless attractive for 
DevOps teams complicates defenders’ tasks: egress traffic 
inspection, log analysis, and attack emulation become highly 
fragmented; the detect—fix loop must fit into minutes, since 
a function may cease to exist immediately after execution.

Empirical data proves that traditional methods are not 
working anymore. An Orca Security study revealed more than 
a billion cloud assets, indicating that 61% of organizations 
still store root accounts without MFA, and 81% have at least 
one publicly accessible resource with open ports vulnerable 
to automated scanning (Orca Security, 2024). These figures 
perfectly illustrate how much stuck-in-the-culture-of-a-
segmented-perimeter the true reality of modern cloud is, 
where the main element of attack is increasingly not the 
network but a combination of a mistaken IAM permission, 
as well as a vulnerable package in the build chain, and an 
instantly deployed trigger.



Page | 101Universal Library of Engineering Technology

Ensuring the Security of Serverless Applications Using the Zero Trust Approach

So the model-agnostic Zero Trust approach is no longer 
a buzzword, but rather an imperative reality: when each 
function lives for just some seconds and when request 
context can change faster than you can update an ACL table, 
the only stable control point available to implement would be 
never trust, always verify. That means implementing strictly 
enforced identity validation for every call, minimization 
of privileges at the level of roles and service accounts, 
cryptographic integrity of build artifacts, and continuous 
event monitoring-these exact elements that can help fill in 
the gap left by classical predominantly perimeter-oriented 
protections.

Materials and Methodology
The research is based on a comprehensive analysis of 
academic and industry sources, empirical report data, and 
practical guides from leading cloud providers. The theoretical 
foundation is formed from works devoted to the dynamics of 
serverless architecture adoption and their impact on cloud 
transformation: according to the Cloud Native Computing 
Foundation, in 2024, 89% of organizations apply cloud-
native approaches, and functions and managed events ranked 
among the three most in-demand technologies (Silverthorne 
& Hendrick, 2025). Gartner’s forecast confirmed the rapid 
growth of the code as a function model, showing an increase 
in the number of companies using serverless from 30% to 
more than half in one year (Kasthuri et al., 2024). To capture 
the current threat landscape, Orca Security reports were 
used, demonstrating systemic gaps in the application of basic 
protections in cloud environments, including storage of root 
accounts without MFA and the presence of public resources 
with open ports (Orca Security, 2024). These data became 
the empirical basis for framing the problem of traditional 
security at the periphery.

Methodologically, several Complementary directions were 
pooled in this study. The first is a systematic review of threat 
statistics as recorded by industry analysts. Data on the Growth 
in the number of unauthorized sessions and anomalous 
account logins (Quist, 2025) together with observations 
on where prevalences lies in vulnerabilities within event 
triggers and supply chain (JFrog, 2025; Teemu, 2024) have 
been used to formulate which key attack vectors are being 
used. A comparative analysis of serverless architectural 
features is undertaken in this direction. It includes a study on 
cold starts and shared runtimes (Chai et al., 2025) that form 
side channels and new scenarios for data leakage. The third 
is regulatory and practical protection models that studies: 
AWS Lambda security guide (AWS, 2025) together with 
OWASP documentation (OWASP, n.d.) applied here to verify 
the set of minimum measures that are embedded within a 
Zero Trust architecture as mandatory elements.

Results and Discussion
Serverless architectures revolve around a minimal set of 
managed components: functions run executable code exactly 
for the time needed to process an event; triggers provide 

system reactivity, linking invocations to sources such as HTTP 
gateways, message queues, or object-storage change events; 
and auxiliary managed services—databases, secret stores, 
service meshes—assume subsystem resilience and scaling. 
Together, this forms a Function-as-a-Service model in which 
the developer operates on business logic, while infrastructure 
tasks—from container provisioning to autoscaling—remain 
invisible. The popularity of the approach is corroborated 
by the annual Cloud Native Computing Foundation survey: 
in 2024, 89% of organizations reported using cloud-native 
techniques, and functions, together with containers and 
Kubernetes, ranked in the top three most commonly used 
technologies (Silverthorne & Hendrick, 2025). In 2024, there 
is a shift toward deeper cloud-native adoption: the shares of 
much and nearly all increased (36% and 24%, respectively), 
while the intermediate category some decreased (28% vs. 
34% in 2023), as shown in Figure 1.

Fig. 1. Cloud-Native Adoption Levels (Silverthorne & 
Hendrick, 2025)

This design brings obvious benefits. Abandoning permanent 
virtual machines eliminates OS maintenance costs, and 
horizontal per-event scaling allows paying only for the 
actual time the code runs. The market is responding with 
corresponding growth: The global serverless architecture 
market size was valued at USD 9.42 billion in 2023 and is 
projected to grow at a CAGR of 28.2% from 2024 to 2030, as 
shown in Figure 2 (Grand View Research, n.d.).

Fig. 2. The global serverless architecture market size 
(Grand View Research, n.d.)



Page | 102Universal Library of Engineering Technology

Ensuring the Security of Serverless Applications Using the Zero Trust Approach

From a security standpoint, serverless creates a qualitatively 
new attack surface. Instances live for seconds, so traditional 
protection agents and periodic scanning lose effectiveness; 
network boundaries blur, and all decisions are made at 
the IAM policy level. An erroneously granted role with 
permissions turns a short-lived function into a springboard 
for escalation, consistent with OWASP’s conclusion that 
violations of the least-privilege principle remain one of the key 
causes of application compromise (OWASP, n.d.). The supply 
chain increases the vulnerability; if an unsecured package 
gets into the build, it will manifest itself in many short-lived 
containers until the CI/CD finds out what the problem is. 
That is why major providers such as AWS emphasize in their 
guides that strict IAM policy management and cryptographic 
verification of artifacts are baseline measures to reduce the 
attack surface in the Lambda environment (AWS, 2025). For 
AWS Lambda, AWS manages the underlying infrastructure 
and foundation services, the operating system, and the 
application platform, as shown in Figure 3.

Fig. 3. Shared responsibility model for AWS Lambda (AWS, 
2025)

Taken together, these facts show that the code as a function 
architecture requires a rethinking of classical defense 
approaches and pushes toward models where trust is 
minimized at every layer, and verification of identity, code 
provenance, and invocation context becomes a continuous 
process.

The shortest route for an attacker in serverless environments 
remains privilege escalation: all security comes down to 
how precisely IAM roles are defined. Telemetry from Unit 
42 shows that by December 2024 the average organization 
recorded three times more remote command sessions 
launched on behalf of function tokens than at the beginning 
of the year; simultaneously, the number of impossible 
geographic logins grew by 116%, indicating that excessive 
privileges of service accounts are becoming a widespread 
problem (Quist, 2025).

If privileges are the door, event injections are the lock pick. 
The OWASP DVSA demonstration on AWS Lambda shows 
how a single unsafe deserialization in a POST-request 
handler allows JavaScript injection directly into the runtime 
and exfiltration of environment variables to an external 
server (Teemu, 2024). Since the trigger layer (API Gateway 
or S3 event) is attacked, the adversary does not need access 
to the source code: a specially crafted payload is sufficient, 
after which each one-off function becomes an entry point.

Secrets are the prime target. In an extensive late-2024 
extortion campaign, attackers extracted more than 90,000 
credential records from exposed environment-variable files 
and nearly 1,200 IAM tokens, using them for subsequent 
blackmail (Quist, 2025). Such statistics elevate the use of 
specialized vault services from best practice to a mandatory 
requirement.

The delivery pipeline itself is no less vulnerable. Software 
Supply Chain State of the Union 2025 indicates that in 71% 
of organizations, developers are permitted to download 
packages directly from the internet. On average, a typical 
company imports 38 new dependencies monthly (JFrog, 
2025). Without SLSA signatures and reputation filters, this 
becomes the easiest stage to tamper with, since once a single 
library has been poisoned, it gets into the artifact and then 
all deployed functions thereafter, vulnerability propagates 
inside enterprises faster than scanners can keep up with.

Finally, the very model of the cold start creates side channels. 
Research by Ant Group presented at OSDI-2025 showed that 
even after popular optimizations are introduced, launching a 
new function takes hundreds of milliseconds, with up to 40% 
of the time spent on exchanges between runtime layers; the 
overall process implies caching and container reuse under 
high contention (Chai et al., 2025). This regimen raises the 
level of shared memory and devious measurements through 
which a nearby, less-powered function can assess previously 
loaded code or data, changing a production optimization into 
a possible leakage pathway.

All the threats described herein converge on one simple fact: 
the traditional network perimeter for serverless applications 
is no longer effective, and, in most cases, it never was. The 
only reliable barrier is by implementing an end-to-end Zero 
Trust model where every transaction is validated at levels of 
identity, artifact integrity, and execution context.

The transition from the threats described to practical 
measures begins with revisiting the very notion of trust. In 
serverless environments, the only stable control boundary 
is a model in which every component—from a function 
invocation to the movement of a bit of data—is checked 
for authenticity and policy compliance at the very moment 
an action is performed. The first pillar of this approach is 
identity.The ephemeral workflows mandate a multi-factor 
authentication of every function, they manual or automated, 
and strictly minimal rights provisioning. Therefore, even if 
a one-time token gets compromised, the damage would be 



Page | 103Universal Library of Engineering Technology

Ensuring the Security of Serverless Applications Using the Zero Trust Approach

localized with no possibility for an escalation chain since the 
chain gets broken right at the beginning.

The other factor relates to the runtime. The container that 
executes the function must be booted from a known good 
layer, pass an integrity check, and be subject to a reduced set 
of system calls. This level of isolation transforms what was 
previously a potential beachhead for long-term destructive 
code within a disposable short-lived instance into a 
throwaway, managed, and monitored object whose purpose 
ends with the completion of the request.

Afterward, the net. Because traditional perimeter defense 
is not applicable, every touch point within the cloud 
becomes an attack vector. Replace static firewall rules with 
microsegmentation, end-to-end encryption, and mutual 
TLS (mTLS) authentication between services, enabling 
monitoring of every session, regardless of participant 
location, from inside or outside.

It pertains to utilization. Build artifacts signing and auto-
dependency analysis, joined by compile policy enforcement, 
keep out unverified code artifacts or vulnerable package 
sources from the supply chain. Another aspect that enhances 
security comes from input control: validation of the event 
that initiated invocation, as well as validation of processing 
logic—injections are excluded, thus cannot take place before 
business code starts executing.

The fifth pillar is data. In the serverless model, data often moves 
among managed services, which necessitates encryption at 
rest and in transit, as well as centralized secret storage. Keys 
are not distributed via environment variables but are issued 
strictly on demand, with their lifetime synchronized to the 
function’s execution time. This minimizes the likelihood of 
leakage and enforces least privilege at the information level.

The final junction is observability. Environments’ 
ephemerality dictates real-time telemetry collection. Only 
with distributed tracing, streaming log correlation, and ML 
behavioral pattern analysis can deviations be detected within 
seconds, automatically contextualized, and response actions 
initiated even before the attack has brought about tangible 
damage to the organization. They work by interrelating six 
facets to minimize trust at every place in the stack and ensure 
that serverless applications are resilient to contemporary 
threat types.

Projecting the six pillars of trust into practice, an organization 
begins work even before the first line of code appears. At 
the design stage, the core principle is shift left: architectural 
decisions, threat models, and access-policy requirements 
are fixed in the specification as rigorously as functional 
requirements. Schemes of function interactions with 
managed services are described through threat models, and 
each proposed permission in a future IAM profile is checked 
for necessity. Internal security documentation is included 
in reviews alongside API design to eliminate potential gaps 
before they reach the repository.

When the automated build begins, infrastructure becomes 
code. Deployment scripts define every role, environment 
variable, and network route, and the version control system 
tracks changes to infrastructure manifests just as it does to 
source code. An artifact is signed with the build pipeline’s 
key before it gets into the registry; at every deployment 
invocation, this signature is verified, hence breaking 
the traditional supply chain and allowing one to detect 
dependency tampering or unauthorized image changes 
at publish time. Only approved templates are allowed by 
validation policies, automatically blocking any configuration 
outside them; hence, the acceptance pipeline rejects the 
request while explaining which specific right or variable has 
caused the refusal.

At execution time, control shifts to the environment itself. 
Before launching, a function presents a short-lived token 
obtained through federation with the identity center; 
its privilege scope is limited to the specific task and the 
invocation’s lifetime. Network communication is encrypted 
with mutual TLS. Egress traffic goes through a filter that 
checks the destination of the packet against an allow-listed 
set of services. If a request is going outside the approved 
perimeter, then kill the connection before even establishing 
a session. The runtime isolates the function’s system calls 
by prohibiting operations beyond the necessary minimum. 
This is, thereby making every instance a throwaway capsule 
having stiff boundaries within which code does exactly the 
work it was written for.

The closure happens with continuous monitoring. 
Authentication logs, function invocations, and network 
connections are delivered into a central real-time stream; 
correlation rules relate them to one another, building a chain 
from the initial request up to the final database write. The 
anomaly detection system reports unusually high privileged 
role activations or a spike in outbound traffic to an unfamiliar 
domain, it triggers automatic function rollback or isolation. 
This creates a loop through which information flows back into 
the development pipeline: response time as quality metrics, 
false positive rates as quality metrics, numbers of rejected 
deployments as quality metrics, and discovered patterns 
added to tests and policies of the next sprint. Such a closed 
loop makes it possible to maintain the never trust, always 
verify principle at every turn of the serverless application 
life cycle.

Conclusion
The bottom line of the article is that securing serverless 
applications with the Zero Trust approach requires 
a fundamental realignment of security principles in 
tandem with the rapidly growing popularity of serverless 
architectures. Large-scale adoption of functions as a service 
amplifies certain vulnerabilities connected to instantaneous 
deployment and ephemeral runtimes because the classic 
methodology based on stable perimeters and long periods 
of monitoring is no longer valid. It, therefore, seems from the 



Page | 104Universal Library of Engineering Technology

Ensuring the Security of Serverless Applications Using the Zero Trust Approach

analysis that the main attack vectors comprise mistakes in 
identity and access management, supply-chain vulnerability, 
and event trigger exploitation. At the same time, statistics 
confirm that excessive privileges and unsafe secret storage 
most often become the sources of compromise.

Under these conditions, Zero Trust is not an additional tool 
but a mandatory model that embeds security into every stage 
of the application life cycle. At the design stage, the shift left 
principle is implemented. Requirements for authentication 
and least privilege are fixed even before code is written. 
In the course of implementation, infrastructure as code 
guarantees supply-chain integrity together with obligatory 
cryptographic artifact signing. On the execution front, 
enforced function isolation, mutual attestation, and egress 
control block any unauthorized interaction. At last, a closed 
loop of continuous monitoring and automatic response in 
which security is not an act of assurance at some point but 
rather a continual process.

Thus, by extending the major vulnerabilities that come 
with the serverless model to neutralize through ensuring 
authentication, integrity control, and observability at all 
levels, Zero Trust can be applied. Never trust, always verify 
is the ultimate universal mechanism that has the ability to fit 
into the dynamics of the cloud environment and emerging 
threats. Therefore, serverless applications preserve their 
main value – flexibility and scalability when attaining 
a protection level comparable with or even exceeding 
traditional architectures.

References
AWS. (2025). 1.	 Security Overview of AWS Lambda. AWS. 
https://docs.aws.amazon.com/pdfs/whitepapers/
latest/security-overview-aws-lambda/security-
overview-aws-lambda.pdf

Chai, X., Tan, J., Bie, T., Shen, A., Shen, D., Xing, Q., Song, 2.	
S., Yang, T., Gao, L., Yu, F., He, Z., Du, D., Xia, Y., Jiao, S., 
Hu, K., Kang, C., & Chen, Y. (2025). Fork in the Road: 
Reflections and Optimizations for Cold Start Latency in 
Production Serverless Systems. Proceedings of the 19th 
USENIX Symposium on Operating Systems Design and 
Implementation. https://www.usenix.org/system/files/
osdi25-chai-xiaohu.pdf

Grand View Research. (n.d.). 3.	 Serverless Architecture 
Market Size Report, 2018-2030. Grand View Research. 
Retrieved July 20, 2025, from https://www.
grandviewresearch.com/industry-analysis/serverless-
architecture-market

JFrog. (2025). 4.	 Software Supply Chain State of the Union 
2025. https://s201.q4cdn.com/814780939/files/doc_
presentations/2025/Apr/01/JFrog-Software-Supply-
Chain-Report-2025.pdf

Kasthuri, M., Yalala, V., Mishra, V., Mehra, A., & Chordiya, 5.	
S. (2024). Cloud Trends 2025: Trend report from DMTS 
Community Of Cloud Technology Unveiling the Future. 
https://www.wipro.com/content/dam/nexus/en/
lab45/images/cloud-trends-2025-unveiling-the-future-
of-cloud-technology.pdf

Orca Security. (2024). 6.	 State of Cloud Security Report: 
Uncovering what is lurking in the depths of cloud 
environments. https://orca.security/wp-content/
uploads/2024/02/2024-State-of-Cloud-Security-
Report.pdf

OWASP. (n.d.). 7.	 A01 Broken Access Control. OWASP; 
OWASP. Retrieved July 21, 2025, from https://owasp.
org/Top10/A01_2021-Broken_Access_Control/

Quist, N. (2025, March 27). 8.	 Cloud Threats on the Rise: 
Alert Trends Show Intensified Attacker Focus on IAM, 
Exfiltration. Unit 42. https://unit42.paloaltonetworks.
com/2025-cloud-security-alert-trends/

Silverthorne, V., & Hendrick, S. (2025). 9.	 Valerie Silverthorne, 
Cloud Native Computing Foundation Cloud Native 2024 
Approaching a Decade of Code, Cloud, and Change. CNCF. 
https://www.cncf.io/wp-content/uploads/2025/04/
cncf_annual_survey24_031225a.pdf

Teemu. (2024). 10.	 Hacking AWS Lambda Functions - from 
Theory to Practice. Nordhero. https://www.nordhero.
com/posts/hacking-lambda-functions-from-theory-to-
practice/

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


