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In the article, modern methods of organizing cloud storage for analytics of high-frequency (HF) and high-cardinality (HC) 
time series (TS) are examined, driven by the growth of data volumes reaching millions of points per second. The author 
substantiates the relevance of the study with the example of forecasts for the increase in the number of IoT devices to 41.6 
billion by 2025 and the associated needs for HF-HC-TS analysis demanded in real-time financial, telecommunications, and 
cloud monitoring systems. The primary objective of this study is to review and contrast DWH approaches in light of the swift 
HF-HC-TS streams. The author proceeds from the systematization of 16 primary sources. Innovation rests in formalizing 
a set of methods that unite ingest optimization, late event handling via two timestamps, and a trust window. Key results 
demonstrate that using an append-only model in conjunction with the Capacitor format ensures linear scalability of 
streaming ingest and minimizes storage costs through delta encoding and dictionary compression. The introduction of 
two timestamps and watermarks in Dataflow/Apache Beam enables the correct handling of late-arriving points without 
requiring the rebuilding of historical data. The article demonstrates that combining architectural features of BigQuery 
with well-conceived operational practices—from mandatory partition filters and ingest lag control to the judicious choice 
of clustering columns and avoidance of JavaScript UDFs—creates a stable balance between performance and budget. The 
suggested set of anti-patterns helps identify and rectify unproductive plans promptly, restoring the system to its optimal 
working state. The mentioned ways ensure meeting SLA needs for delay and price when dealing with data flows that 
contain billions of records each day. This article is highly relevant to businesses that involve live analysis and monitoring, 
encompassing finance, IoT reporting, telecommunications, and building management.
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IntroductIon
High-frequency time series denote streams in which a 
new point appears with subsecond periodicity, and in 
financial systems, with submillisecond periodicity. High 
cardinality refers to hundreds of thousands or millions of 
independent identifiers by which these points are grouped. 
Such characteristics are not limited to trading platforms: 
IDC research forecasts 41.6 billion connected IoT devices by 
2025, capable of generating 79.4 zettabytes of data per year, 
with the majority of this data expected to be high-frequency, 
high-throughput, and low-latency [1].

The most prominent domains where these series arise 
naturally are real-time trading systems (tick tapes of stocks 
and options), telemetry and remote control of IoT fleets, 5G 
mobile network core signals, as well as detailed event logs 
in distributed cloud clusters collected by site reliability 
engineering (SRE) teams for monitoring. In each case, the 

data arrives continuously but must be analyzed almost 
instantaneously to ensure, for example, arbitrage trading, 
adaptive regulation of sensor power, or automatic server 
scaling.

The primary bottlenecks when working with such streams 
are well known. First, ingest speed. Even the fundamental 
limit of the BigQuery Streaming API allows 100,000 rows per 
second per table and 500,000 rows per project in the US / EU 
regions [2]. Second, inevitable late and out-of-order events 
require tolerant semantics and watermarks. Third, scanning 
petabytes of columns for a second-level chart is expensive. 
Under BigQuery’s on-demand model, billing is based on 
the number of terabytes scanned, so improper partitioning 
can easily multiply the bill several times [3]. Finally, 
complex windowed aggregates must execute within tens 
of milliseconds, otherwise real-time dashboards lose their 
relevance. An academic review of time series management 
systems (TSMS) reveals that specialized time series databases 
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(TSDBs) often struggle precisely with the combination of 
high cardinality and arbitrary analytical queries, as they are 
optimized for fixed patterns of timestamp-value pairs [4].

Cloud data warehouses, and especially Google BigQuery, 
remove these limitations through architectural solutions: 
physical separation of storage and compute allows elastic 
scaling of slots for peak loads without manual sharding; the 
columnar Capacitor format automatically applies dictionary 
and delta encoding, reducing the size of historical tables; 
streaming ingest via the Storage Write API provides exactly-
once delivery even under high queue turbulence. Another 
critical point is that time-based partitioning and multi-
level clustering should be available declaratively in DDL, 
so engineers do not have to maintain dozens of custom 
partitions, as in classic TSDBs. Hence, BigQuery can process 
billions of events per day with a cost-effective scanning and 
median query latency within the SLA.

MaterIals and Methodology
The storage techniques for HF-HC-TS analytics is drawn from 
16 sources: the IDC report on IoT data volumes [1], detailing 
BigQuery Streaming API and cost estimates for scanning 
[2, 3], a review TSMS noting that TSDBs have limitations 
under high cardinality [4], materials on streaming pipelines 
with Dataflow / Apache Beam [5] and a guide to seamless 
streaming pipeline updates [6], CDC models in BigQuery[7, 
8] partitioning and clustering[9,10] recommendations on 
compute optimization & use of surrogate keys for Capacitor 
compression[11] and profiling & managing partition and 
cluster recommendations[14, 16].

Methodologically, the work combines several elements. 
First, it compares the append-only ingest model with SCD-2, 
demonstrating that appends in the Capacitor format minimize 
costs and simplify sharding under HF conditions [10, 11]. 
Second, for handling late-arriving data, two timestamps 
(event_ts and ingest_ts) and a trust window strategy with 
MERGE-UPSERT are applied on partitions whose ingest_ts 
is older than watermark-α, as described for Dataflow/Beam 
[5]. Third, the choice of partition granularity and multi-level 
clustering for both low- and high-cardinality columns is 
optimized to reduce the number of bytes scanned and speed 
up queries [9, 10].

results and dIscussIon
In high-frequency time series with millions of records per 
second, the best model remains append-only. The new point 
is added as a separate row. Corrections are published as 
version 2 of the same business entity. This approach scales 
exceptionally well because it does not require locks and 
allows linear sharding of streaming ingestion. Switching to a 
classic SCD-2 scheme of incremental replacements (update-
in-place) only makes sense at extremely low arrival rates, 
because in BigQuery, it is precisely appends that guarantee 
the most cost-effective storage, through columnar delta 
encoding.

The problem of late and out-of-order events is solved by 
introducing two independent timestamps: event_ts, obtained 
from the source device, and ingest_ts, assigned by the 
system upon ingestion. In a streaming pipeline, watermarks 
advance based on event_ts; at the same time, a trust window 
of, say, fifteen minutes permits merges performed as a batch 
MERGE-UPSERT on partitions whose ingest_ts is older 
than watermark-α. This strategy enables the accounting 
for almost all late points without rebuilding old partitions. 
It is formalized in Dataflow/Apache Beam, where an event 
arriving beyond the watermark is automatically marked as 
late data [5].

A hopping window is a fixed time interval in the data stream. 
Hopping windows may overlap, whereas tumbling windows 
do not overlap. For example, a hopping window may start 
every thirty seconds and cover a one-minute period of data. 
The frequency at which hopping windows begin is referred 
to as the period [5]. In Figure 1, it is shown how elements 
are divided into one-minute hopping windows with a thirty-
second interval. In this example, there is a one-minute 
window and thirty seconds.

Fig. 1. Distribution of Elements Across Overlapping 
Hopping Windows [5]

Schema evolution is inevitable in long-lived monitoring 
systems: a new sensor appears, a field format changes, or 
a numeric surrogate key is added to string labels. BigQuery 
allows adding a nullable column online and relaxing a 
REQUIRED→NULLABLE mode without table rewriting; 
similar changes are already supported in Pub/Sub schemas, 
enabling zero downtime even at hundreds of thousands of 
RPS [6]. More critical changes, such as dropping or renaming 
a column, are implemented in a side-by-side schema with 
bidirectional streaming until consumers have migrated.

Likewise, to update a streaming pipeline without downtime, 
one uses parallel deployment: a new streaming job with 
updated code is created and run alongside the existing one, 
using the same windowing strategy. The existing pipeline 
continues until its watermark exceeds the timestamp 
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of the earliest complete window processed by the new 
pipeline. After this, the old pipeline is either drained or 
canceled, and the new one takes over entirely for processing. 
Both pipelines write results to different stores, allowing 
downstream systems, via an abstraction such as a database 
view, to merge data and eliminate duplicates from the period 
of simultaneous processing, as shown in Figure 2.

Fig. 2. Parallel Streaming Pipeline Update with Overlapping 
Five-Minute Tumbling Windows [6]

Finally, to ensure that analytical data marts, machine learning, 
and regulatory reporting receive only deltas rather than a 
complete dump of yesterday’s data, Change Data Capture is 
organized on top of the base tables [7]. The Storage Write 
API supports exactly-once upsert semantics and produces a 
change log, which is streamed into a Pub/Sub topic. This log 
is then either materialized into BigQuery via a native CDC 
subscription or distributed to external services requiring 
reactive data synchronization [8]. This architectural pattern 
closes the loop from the immutable raw store to reactive 
consumers without violating the latency guarantees 
described in the Introduction.

Choosing the partition granularity suitable for a specific HF-
HC dataset begins by matching the analytics window to the 
data arrival rate. In BigQuery, a table may be divided by hours 
or days, or rely on the pseudo-column _PARTITIONTIME 
for ingestion-time partitioning [9]. Hourly partitions are 
appropriate when query windows rarely exceed twenty-four 
hours and the daily volume exceeds one billion rows: in this 
case, the bytes scanned in a typical last-hour query decrease 
almost proportionally to the number of hourly segments. For 
retrospective reports spanning months, daily partitioning is 
more efficient, ensuring that metadata does not grow faster 
than valid data. Ingestion-time partitioning is convenient 
when event_ts often lags, as it simplifies the pipeline by 
avoiding writes to older dates.

After selecting the partitioning scheme, the clustering order 
is defined. BigQuery sorts blocks on up to four columns, and 
its engine applies block pruning to exclude irrelevant blocks 
before actual reading [10]. In practice, the first position is 
reserved for a low-cardinality filter column (for example, 

event_type), followed by truly high-cardinality keys such 
as device_id or user_id. The order is critical: if the WHERE 
clause filters only on the second column, the savings will be 
much lower than when filtering on the first column.

To ensure these advantages persist even under continuous 
streaming of tens of gigabytes per hour, BigQuery runs 
automatic reclustering. This background process re-sorts 
new deltas and merges them into the base block without user 
intervention, eliminating the scheduled VACUUM operations 
typical of classic data warehouses [10].

The low query cost mentioned in the previous section is 
achieved not only by proper table partitioning but also by 
the storage format itself. Inside BigQuery, data is stored in 
Capacitor: before writing, each column is dictionary-encoded, 
then run-length compressed, and finally delta-encoded for 
numeric and timestamp values. This cascade allows repeated 
string values to be stored as just a few bytes of references, 
and monotonic timestamps as increments, which in real 
clusters yields compression ratios multiple times better than 
file formats such as Parquet or ORC.

If, instead of long string identifiers, surrogate keys of type 
INT64 are introduced in advance, the dictionary for that 
column shrinks proportionally to the average length of 
the original string. On IoT streams, converting to numeric 
surrogate keys reduces the column size because Capacitor 
now sees only small numbers, which are ideal for delta 
encoding. Experience shows that the benefit of this operation 
pays for the computation of keys at ingestion time through 
lower storage and subsequent scan costs, the latter of which 
depend directly on the physical table size [11].

As streaming continues, deltas accumulate over the base 
block; to prevent fragmentation from growing, BigQuery 
automatically triggers reclustering, re-sorting fresh fragments 
until the new baseline reaches a certain threshold. The user 
only needs to set the storage_partition_period parameter, 
which specifies the minimum age of fragments eligible for 
compaction: lowering this value accelerates consolidation 
but increases instantaneous slot consumption. By combining 
these techniques, one can precisely calculate savings. For 
an initial log of 1 TiB per day, the daily storage cost in us-
central1 is $23,552 (active logical rate) [12].

Compressed columns also accelerate queries themselves. 
For the scenario, the last state of an object, it is sufficient to 
scan only the latest partition and select the earliest element 
in time within each group. The operator ROW_NUMBER() 
OVER (PARTITION BY device_id ORDER BY event_ts DESC) 
together with QUALIFY rn = 1 achieves this without joins, 
since the filter on _PARTITIONTIME excludes the vast 
majority of fragments before reading. When analytics 
require continuous sliding calculations, the new operator 
TIMELINE_GAP_FILL fills gaps in the series and aggregates 
values directly over the necessary windows.

For delta analytics, a simple technique is convenient: instead 
of heavy self-joins on key equality and nearest timestamp, 
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use LAG() or LEAD(), and when only the last element in a 
window matters, ARRAY_AGG(value ORDER BY event_ts 
DESC LIMIT 1) works better. Python engineers can now 
perform the same calculations using BigQuery DataFrames 
v2, where enabled partial ordering mode ensures that 
the engine orders only the used columns, preserving lazy 
evaluation of the rest [13].

After execution, total_slot_ms and total_bytes_processed 
remain in INFORMATION_SCHEMA.JOBS from which they 
can be extracted into a dashboard and used to build a cost 
trend. This measure-change-measure cycle allows empirical 
confirmation that the described techniques reduce costs 
rather than merely promising it on paper [14].

A reliable pipeline for HF-HC data relies on several rules, 
each of which eliminates unnecessary bytes or milliseconds 
before they can become costly. First, all queries to partitioned 
tables must include a constant filter on the partition column; 
the require partition filter option forces errant dashboards 
to fail immediately, thereby disciplining developers [15]. 
Second, ingest lag is monitored via the uploaded_bytes_
count metric and a strict SLO. If the streaming delay exceeds 
a specified threshold, the pipeline automatically switches 
from Pub/Sub to direct Storage Write API. Third, before 
performing any JOIN, both sides must be aggregated or 
reduced to the required time window; otherwise, the shuffle 
will consume slots and budget [11]. Fourth, each fact table 
may have no more than four clustering columns, and only in 
the order in which they most frequently appear in WHERE 
clauses; the built-in recommender will suggest the optimal 
depth after one week of operation. Fifth, new fields are 
added as nullable, while old fields are deprecated through a 
view layer, allowing the schema to evolve without downtime. 
Sixth, surrogate keys replace multibyte string identifiers 
already in the stream worker, because they compress best in 
Capacitor, reducing storage and scan costs. Seventh, storage_
partition_period is set to a minimum interval to prevent the 
compaction process from competing with live streaming. 
Eighth, all ETL jobs EXPLAIN and store total_bytes_processed 
in a separate control table: if volume grows by more than a 
predefined percentage under the same business logic, an 
alert opens an incident. Ninth, using partition and cluster 
recommendations at least once per quarter eliminates the 
need for manual configuration review, as the algorithm 
already accounts for changed query patterns [16]. Tenth, 
stream and batch costs are compared monthly to on-demand 
scan prices. Sometimes, it is more cost-effective to recompute 
a data mart hourly rather than maintaining it in real-time, 
especially considering that the Write API is billed separately 
from compute slots [12].

Typical anti-patterns are derived from these same rules, 
but with opposite signs. The absence of a partition filter is 
instantly diagnosed with the message Cannot query over 
table without a filter; If an administrator disables this 
requirement, a sudden jump in total_bytes_processed with 
an unchanged query count becomes an indirect indicator. A 

second signal is SELECT * on a wide schema: the plan will 
show that the entire column is scanned, even though the 
report uses only a few fields. This is remedied by refactoring 
queries and creating views with narrow select lists. The third 
trap is unsystematic clustering: if INFORMATION_SCHEMA.
COLUMN_FIELD_PATHS indicates that filtering on the second 
or third clustering column is triggered less frequently than 
a certain percentage of queries, resulting in wasted sorting 
and increased write latency. Fourth, using the legacy API 
for streaming under stable load: quota logs from jobs_by_
project quickly reveal that ingestion speed is insufficient and 
slot overuse is leading to retries. Fifth, arbitrary JavaScript 
UDFs: their share of time in the EXPLAIN profile appears 
as UserDefinedFunctionStage, indicating that business 
logic should be offloaded to Dataflow or DataFrames v2. 
Finally, suppose a cross-region query regularly scans tens of 
terabytes, and latency increases by hundreds of milliseconds. 
In that case, this is a clear sign that data or compute must be 
consolidated in a single location. BigQuery guarantees four-
fold replication within a region but does not hide network 
delays between areas. When these symptoms are identified 
and resolved, the pipeline returns to its SLAs, and budget 
savings are confirmed by metrics collected from the design 
phase onward. Figure 3 illustrates common anti-patterns 
in data-pipeline optimization, including the absence of 
partition filtering, unsystematic clustering, legacy API usage, 
excessive JavaScript UDFs, and cross-region queries, which 
lead to inefficient scanning and increased costs.

Fig. 3. Patterns Affecting the Efficiency of Data Pipeline 
Optimization (compiled by author)

As a result of applying the rules described above—from 
mandatory partition filtering and streaming-lag control 
to prudent choice of clustering columns, schema evolution 
via nullable fields, and the replacement of heavy string 
identifiers with surrogate keys—the HF-HC data pipeline 
achieves an optimal balance between performance and cost. 
Timely aggregation before JOINs, adjustment of partitioning 
periods, continuous monitoring of scanned volumes, and 
regular updating of partition and cluster recommendations 
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prevent resource overconsumption and ensure SLAs remain 
within strict bounds. Understanding and eliminating 
common anti-patterns—from the absence of partition 
filtering and unsystematic clustering to the use of legacy 
streaming APIs, JavaScript UDFs, and excessive cross-region 
queries—returns the system to a zone of stable operation 
and cost efficiency.

conclusIon

The solutions described in the article demonstrate that 
combining the architectural features of Google BigQuery 
with well-considered operational practices enables the 
reliable processing of HF-HC-TS streams at a rate of millions 
of records per second. First, using an append-only model, 
together with the Capacitor format, provides linear ingest 
scalability and minimal storage costs. Delta encoding and 
dictionary compression keep table sizes under control, 
and avoiding update-in-place eliminates locks. Second, 
introducing two timestamps (event_ts and ingest_ts) 
together with watermarks in Apache Beam/Dataflow 
pipelines ensures the correct handling of late events without 
requiring the complete rebuilding of historical partitions, 
thereby preserving consistency during analytics within a 
trust window.

Key to low query latency is declarative time-based partitioning 
and multi-level clustering: choosing appropriately among 
hourly, daily, and ingestion-time partitions, as well as 
ordering low- and high-cardinality keys (event_type, device_
id, user_id) in sequence, allows block pruning to exclude 
unnecessary data before reading. Background reclustering 
operations and automatic delta merges eliminate the need 
for manual VACUUM procedures, maintaining efficiency 
even under a continuous data stream. Schema evolution is 
implemented by adding nullable fields and using a side-by-
side strategy when removing columns, eliminating downtime 
even at hundreds of thousands of RPS.

For analytical data marts and machine learning on base 
tables, CDC based on the Storage Write API is implemented. 
The change log, with exactly-once semantics, is either 
materialized in BigQuery or sent to Pub/Sub, ensuring 
that consumers receive only deltas. Query optimization is 
achieved using the ROW_NUMBER() OVER and TIMELINE_
GAP_FILL operators, employing LAG()/LEAD() or ARRAY_
AGG instead of heavy joins, and BigQuery DataFrames v2 with 
partial ordering, which eliminates unnecessary shuffling and 
preserves lazy evaluation. Cost control involves a two-phase 
profiling approach (EXPLAIN plus INFORMATION_SCHEMA.
JOBS metrics), enabling empirical verification of the impact 
of changes on total bytes processed.

A set of ten rules—from mandatory partition filtering and 
ingest lag monitoring to judicious column selection for 
clustering and replacing string identifiers with surrogate 
keys—creates a stable balance between performance and 
cost. Eliminating anti-patterns (absence of partition filter, 

unsystematic clustering, legacy API usage, JavaScript UDFs, 
and cross-region queries) restores performance and cost-
effectiveness. Ultimately, the methods described ensure SLA 
levels for latency and budget when handling data streams of 
billions of events per day.
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