
Page | 38www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 3

Open Access | PP: 38-43

DOI: https://doi.org/10.70315/uloap.ulete.2025.0203008

Universal Library of Engineering Technology Research Article

Data Warehousing Techniques for High-Cardinality, High-Frequency
Time-Series Analytics
Khrystyna Terletska
Senior Software Engineer at Datadog, NewYork, USA.

In the article, modern methods of organizing cloud storage for analytics of high-frequency (HF) and high-cardinality (HC)
time series (TS) are examined, driven by the growth of data volumes reaching millions of points per second. The author
substantiates the relevance of the study with the example of forecasts for the increase in the number of IoT devices to 41.6
billion by 2025 and the associated needs for HF-HC-TS analysis demanded in real-time financial, telecommunications, and
cloud monitoring systems. The primary objective of this study is to review and contrast DWH approaches in light of the swift
HF-HC-TS streams. The author proceeds from the systematization of 16 primary sources. Innovation rests in formalizing
a set of methods that unite ingest optimization, late event handling via two timestamps, and a trust window. Key results
demonstrate that using an append-only model in conjunction with the Capacitor format ensures linear scalability of
streaming ingest and minimizes storage costs through delta encoding and dictionary compression. The introduction of
two timestamps and watermarks in Dataflow/Apache Beam enables the correct handling of late-arriving points without
requiring the rebuilding of historical data. The article demonstrates that combining architectural features of BigQuery
with well-conceived operational practices—from mandatory partition filters and ingest lag control to the judicious choice
of clustering columns and avoidance of JavaScript UDFs—creates a stable balance between performance and budget. The
suggested set of anti-patterns helps identify and rectify unproductive plans promptly, restoring the system to its optimal
working state. The mentioned ways ensure meeting SLA needs for delay and price when dealing with data flows that
contain billions of records each day. This article is highly relevant to businesses that involve live analysis and monitoring,
encompassing finance, IoT reporting, telecommunications, and building management.

Keywords: High-Frequency Time Series, High Cardinality, BigQuery, Partitioning, Clustering, Capacitor, Append-Only,
Watermarks, Surrogate Keys, Change Data Capture.

Abstract

Citation: Khrystyna Terletska, “Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics”,
Universal Library of Engineering Technology, 2025; 2(3): 38-43. DOI: https://doi.org/10.70315/uloap.ulete.2025.0203008.

IntroductIon
High-frequency time series denote streams in which a
new point appears with subsecond periodicity, and in
financial systems, with submillisecond periodicity. High
cardinality refers to hundreds of thousands or millions of
independent identifiers by which these points are grouped.
Such characteristics are not limited to trading platforms:
IDC research forecasts 41.6 billion connected IoT devices by
2025, capable of generating 79.4 zettabytes of data per year,
with the majority of this data expected to be high-frequency,
high-throughput, and low-latency [1].

The most prominent domains where these series arise
naturally are real-time trading systems (tick tapes of stocks
and options), telemetry and remote control of IoT fleets, 5G
mobile network core signals, as well as detailed event logs
in distributed cloud clusters collected by site reliability
engineering (SRE) teams for monitoring. In each case, the

data arrives continuously but must be analyzed almost
instantaneously to ensure, for example, arbitrage trading,
adaptive regulation of sensor power, or automatic server
scaling.

The primary bottlenecks when working with such streams
are well known. First, ingest speed. Even the fundamental
limit of the BigQuery Streaming API allows 100,000 rows per
second per table and 500,000 rows per project in the US / EU
regions [2]. Second, inevitable late and out-of-order events
require tolerant semantics and watermarks. Third, scanning
petabytes of columns for a second-level chart is expensive.
Under BigQuery’s on-demand model, billing is based on
the number of terabytes scanned, so improper partitioning
can easily multiply the bill several times [3]. Finally,
complex windowed aggregates must execute within tens
of milliseconds, otherwise real-time dashboards lose their
relevance. An academic review of time series management
systems (TSMS) reveals that specialized time series databases

Page | 39Universal Library of Engineering Technology

Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics

(TSDBs) often struggle precisely with the combination of
high cardinality and arbitrary analytical queries, as they are
optimized for fixed patterns of timestamp-value pairs [4].

Cloud data warehouses, and especially Google BigQuery,
remove these limitations through architectural solutions:
physical separation of storage and compute allows elastic
scaling of slots for peak loads without manual sharding; the
columnar Capacitor format automatically applies dictionary
and delta encoding, reducing the size of historical tables;
streaming ingest via the Storage Write API provides exactly-
once delivery even under high queue turbulence. Another
critical point is that time-based partitioning and multi-
level clustering should be available declaratively in DDL,
so engineers do not have to maintain dozens of custom
partitions, as in classic TSDBs. Hence, BigQuery can process
billions of events per day with a cost-effective scanning and
median query latency within the SLA.

MaterIals and Methodology
The storage techniques for HF-HC-TS analytics is drawn from
16 sources: the IDC report on IoT data volumes [1], detailing
BigQuery Streaming API and cost estimates for scanning
[2, 3], a review TSMS noting that TSDBs have limitations
under high cardinality [4], materials on streaming pipelines
with Dataflow / Apache Beam [5] and a guide to seamless
streaming pipeline updates [6], CDC models in BigQuery[7,
8] partitioning and clustering[9,10] recommendations on
compute optimization & use of surrogate keys for Capacitor
compression[11] and profiling & managing partition and
cluster recommendations[14, 16].

Methodologically, the work combines several elements.
First, it compares the append-only ingest model with SCD-2,
demonstrating that appends in the Capacitor format minimize
costs and simplify sharding under HF conditions [10, 11].
Second, for handling late-arriving data, two timestamps
(event_ts and ingest_ts) and a trust window strategy with
MERGE-UPSERT are applied on partitions whose ingest_ts
is older than watermark-α, as described for Dataflow/Beam
[5]. Third, the choice of partition granularity and multi-level
clustering for both low- and high-cardinality columns is
optimized to reduce the number of bytes scanned and speed
up queries [9, 10].

results and dIscussIon
In high-frequency time series with millions of records per
second, the best model remains append-only. The new point
is added as a separate row. Corrections are published as
version 2 of the same business entity. This approach scales
exceptionally well because it does not require locks and
allows linear sharding of streaming ingestion. Switching to a
classic SCD-2 scheme of incremental replacements (update-
in-place) only makes sense at extremely low arrival rates,
because in BigQuery, it is precisely appends that guarantee
the most cost-effective storage, through columnar delta
encoding.

The problem of late and out-of-order events is solved by
introducing two independent timestamps: event_ts, obtained
from the source device, and ingest_ts, assigned by the
system upon ingestion. In a streaming pipeline, watermarks
advance based on event_ts; at the same time, a trust window
of, say, fifteen minutes permits merges performed as a batch
MERGE-UPSERT on partitions whose ingest_ts is older
than watermark-α. This strategy enables the accounting
for almost all late points without rebuilding old partitions.
It is formalized in Dataflow/Apache Beam, where an event
arriving beyond the watermark is automatically marked as
late data [5].

A hopping window is a fixed time interval in the data stream.
Hopping windows may overlap, whereas tumbling windows
do not overlap. For example, a hopping window may start
every thirty seconds and cover a one-minute period of data.
The frequency at which hopping windows begin is referred
to as the period [5]. In Figure 1, it is shown how elements
are divided into one-minute hopping windows with a thirty-
second interval. In this example, there is a one-minute
window and thirty seconds.

Fig. 1. Distribution of Elements Across Overlapping
Hopping Windows [5]

Schema evolution is inevitable in long-lived monitoring
systems: a new sensor appears, a field format changes, or
a numeric surrogate key is added to string labels. BigQuery
allows adding a nullable column online and relaxing a
REQUIRED→NULLABLE mode without table rewriting;
similar changes are already supported in Pub/Sub schemas,
enabling zero downtime even at hundreds of thousands of
RPS [6]. More critical changes, such as dropping or renaming
a column, are implemented in a side-by-side schema with
bidirectional streaming until consumers have migrated.

Likewise, to update a streaming pipeline without downtime,
one uses parallel deployment: a new streaming job with
updated code is created and run alongside the existing one,
using the same windowing strategy. The existing pipeline
continues until its watermark exceeds the timestamp

Page | 40Universal Library of Engineering Technology

Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics

of the earliest complete window processed by the new
pipeline. After this, the old pipeline is either drained or
canceled, and the new one takes over entirely for processing.
Both pipelines write results to different stores, allowing
downstream systems, via an abstraction such as a database
view, to merge data and eliminate duplicates from the period
of simultaneous processing, as shown in Figure 2.

Fig. 2. Parallel Streaming Pipeline Update with Overlapping
Five-Minute Tumbling Windows [6]

Finally, to ensure that analytical data marts, machine learning,
and regulatory reporting receive only deltas rather than a
complete dump of yesterday’s data, Change Data Capture is
organized on top of the base tables [7]. The Storage Write
API supports exactly-once upsert semantics and produces a
change log, which is streamed into a Pub/Sub topic. This log
is then either materialized into BigQuery via a native CDC
subscription or distributed to external services requiring
reactive data synchronization [8]. This architectural pattern
closes the loop from the immutable raw store to reactive
consumers without violating the latency guarantees
described in the Introduction.

Choosing the partition granularity suitable for a specific HF-
HC dataset begins by matching the analytics window to the
data arrival rate. In BigQuery, a table may be divided by hours
or days, or rely on the pseudo-column _PARTITIONTIME
for ingestion-time partitioning [9]. Hourly partitions are
appropriate when query windows rarely exceed twenty-four
hours and the daily volume exceeds one billion rows: in this
case, the bytes scanned in a typical last-hour query decrease
almost proportionally to the number of hourly segments. For
retrospective reports spanning months, daily partitioning is
more efficient, ensuring that metadata does not grow faster
than valid data. Ingestion-time partitioning is convenient
when event_ts often lags, as it simplifies the pipeline by
avoiding writes to older dates.

After selecting the partitioning scheme, the clustering order
is defined. BigQuery sorts blocks on up to four columns, and
its engine applies block pruning to exclude irrelevant blocks
before actual reading [10]. In practice, the first position is
reserved for a low-cardinality filter column (for example,

event_type), followed by truly high-cardinality keys such
as device_id or user_id. The order is critical: if the WHERE
clause filters only on the second column, the savings will be
much lower than when filtering on the first column.

To ensure these advantages persist even under continuous
streaming of tens of gigabytes per hour, BigQuery runs
automatic reclustering. This background process re-sorts
new deltas and merges them into the base block without user
intervention, eliminating the scheduled VACUUM operations
typical of classic data warehouses [10].

The low query cost mentioned in the previous section is
achieved not only by proper table partitioning but also by
the storage format itself. Inside BigQuery, data is stored in
Capacitor: before writing, each column is dictionary-encoded,
then run-length compressed, and finally delta-encoded for
numeric and timestamp values. This cascade allows repeated
string values to be stored as just a few bytes of references,
and monotonic timestamps as increments, which in real
clusters yields compression ratios multiple times better than
file formats such as Parquet or ORC.

If, instead of long string identifiers, surrogate keys of type
INT64 are introduced in advance, the dictionary for that
column shrinks proportionally to the average length of
the original string. On IoT streams, converting to numeric
surrogate keys reduces the column size because Capacitor
now sees only small numbers, which are ideal for delta
encoding. Experience shows that the benefit of this operation
pays for the computation of keys at ingestion time through
lower storage and subsequent scan costs, the latter of which
depend directly on the physical table size [11].

As streaming continues, deltas accumulate over the base
block; to prevent fragmentation from growing, BigQuery
automatically triggers reclustering, re-sorting fresh fragments
until the new baseline reaches a certain threshold. The user
only needs to set the storage_partition_period parameter,
which specifies the minimum age of fragments eligible for
compaction: lowering this value accelerates consolidation
but increases instantaneous slot consumption. By combining
these techniques, one can precisely calculate savings. For
an initial log of 1 TiB per day, the daily storage cost in us-
central1 is $23,552 (active logical rate) [12].

Compressed columns also accelerate queries themselves.
For the scenario, the last state of an object, it is sufficient to
scan only the latest partition and select the earliest element
in time within each group. The operator ROW_NUMBER()
OVER (PARTITION BY device_id ORDER BY event_ts DESC)
together with QUALIFY rn = 1 achieves this without joins,
since the filter on _PARTITIONTIME excludes the vast
majority of fragments before reading. When analytics
require continuous sliding calculations, the new operator
TIMELINE_GAP_FILL fills gaps in the series and aggregates
values directly over the necessary windows.

For delta analytics, a simple technique is convenient: instead
of heavy self-joins on key equality and nearest timestamp,

Page | 41Universal Library of Engineering Technology

Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics

use LAG() or LEAD(), and when only the last element in a
window matters, ARRAY_AGG(value ORDER BY event_ts
DESC LIMIT 1) works better. Python engineers can now
perform the same calculations using BigQuery DataFrames
v2, where enabled partial ordering mode ensures that
the engine orders only the used columns, preserving lazy
evaluation of the rest [13].

After execution, total_slot_ms and total_bytes_processed
remain in INFORMATION_SCHEMA.JOBS from which they
can be extracted into a dashboard and used to build a cost
trend. This measure-change-measure cycle allows empirical
confirmation that the described techniques reduce costs
rather than merely promising it on paper [14].

A reliable pipeline for HF-HC data relies on several rules,
each of which eliminates unnecessary bytes or milliseconds
before they can become costly. First, all queries to partitioned
tables must include a constant filter on the partition column;
the require partition filter option forces errant dashboards
to fail immediately, thereby disciplining developers [15].
Second, ingest lag is monitored via the uploaded_bytes_
count metric and a strict SLO. If the streaming delay exceeds
a specified threshold, the pipeline automatically switches
from Pub/Sub to direct Storage Write API. Third, before
performing any JOIN, both sides must be aggregated or
reduced to the required time window; otherwise, the shuffle
will consume slots and budget [11]. Fourth, each fact table
may have no more than four clustering columns, and only in
the order in which they most frequently appear in WHERE
clauses; the built-in recommender will suggest the optimal
depth after one week of operation. Fifth, new fields are
added as nullable, while old fields are deprecated through a
view layer, allowing the schema to evolve without downtime.
Sixth, surrogate keys replace multibyte string identifiers
already in the stream worker, because they compress best in
Capacitor, reducing storage and scan costs. Seventh, storage_
partition_period is set to a minimum interval to prevent the
compaction process from competing with live streaming.
Eighth, all ETL jobs EXPLAIN and store total_bytes_processed
in a separate control table: if volume grows by more than a
predefined percentage under the same business logic, an
alert opens an incident. Ninth, using partition and cluster
recommendations at least once per quarter eliminates the
need for manual configuration review, as the algorithm
already accounts for changed query patterns [16]. Tenth,
stream and batch costs are compared monthly to on-demand
scan prices. Sometimes, it is more cost-effective to recompute
a data mart hourly rather than maintaining it in real-time,
especially considering that the Write API is billed separately
from compute slots [12].

Typical anti-patterns are derived from these same rules,
but with opposite signs. The absence of a partition filter is
instantly diagnosed with the message Cannot query over
table without a filter; If an administrator disables this
requirement, a sudden jump in total_bytes_processed with
an unchanged query count becomes an indirect indicator. A

second signal is SELECT * on a wide schema: the plan will
show that the entire column is scanned, even though the
report uses only a few fields. This is remedied by refactoring
queries and creating views with narrow select lists. The third
trap is unsystematic clustering: if INFORMATION_SCHEMA.
COLUMN_FIELD_PATHS indicates that filtering on the second
or third clustering column is triggered less frequently than
a certain percentage of queries, resulting in wasted sorting
and increased write latency. Fourth, using the legacy API
for streaming under stable load: quota logs from jobs_by_
project quickly reveal that ingestion speed is insufficient and
slot overuse is leading to retries. Fifth, arbitrary JavaScript
UDFs: their share of time in the EXPLAIN profile appears
as UserDefinedFunctionStage, indicating that business
logic should be offloaded to Dataflow or DataFrames v2.
Finally, suppose a cross-region query regularly scans tens of
terabytes, and latency increases by hundreds of milliseconds.
In that case, this is a clear sign that data or compute must be
consolidated in a single location. BigQuery guarantees four-
fold replication within a region but does not hide network
delays between areas. When these symptoms are identified
and resolved, the pipeline returns to its SLAs, and budget
savings are confirmed by metrics collected from the design
phase onward. Figure 3 illustrates common anti-patterns
in data-pipeline optimization, including the absence of
partition filtering, unsystematic clustering, legacy API usage,
excessive JavaScript UDFs, and cross-region queries, which
lead to inefficient scanning and increased costs.

Fig. 3. Patterns Affecting the Efficiency of Data Pipeline
Optimization (compiled by author)

As a result of applying the rules described above—from
mandatory partition filtering and streaming-lag control
to prudent choice of clustering columns, schema evolution
via nullable fields, and the replacement of heavy string
identifiers with surrogate keys—the HF-HC data pipeline
achieves an optimal balance between performance and cost.
Timely aggregation before JOINs, adjustment of partitioning
periods, continuous monitoring of scanned volumes, and
regular updating of partition and cluster recommendations

Page | 42Universal Library of Engineering Technology

Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics

prevent resource overconsumption and ensure SLAs remain
within strict bounds. Understanding and eliminating
common anti-patterns—from the absence of partition
filtering and unsystematic clustering to the use of legacy
streaming APIs, JavaScript UDFs, and excessive cross-region
queries—returns the system to a zone of stable operation
and cost efficiency.

conclusIon

The solutions described in the article demonstrate that
combining the architectural features of Google BigQuery
with well-considered operational practices enables the
reliable processing of HF-HC-TS streams at a rate of millions
of records per second. First, using an append-only model,
together with the Capacitor format, provides linear ingest
scalability and minimal storage costs. Delta encoding and
dictionary compression keep table sizes under control,
and avoiding update-in-place eliminates locks. Second,
introducing two timestamps (event_ts and ingest_ts)
together with watermarks in Apache Beam/Dataflow
pipelines ensures the correct handling of late events without
requiring the complete rebuilding of historical partitions,
thereby preserving consistency during analytics within a
trust window.

Key to low query latency is declarative time-based partitioning
and multi-level clustering: choosing appropriately among
hourly, daily, and ingestion-time partitions, as well as
ordering low- and high-cardinality keys (event_type, device_
id, user_id) in sequence, allows block pruning to exclude
unnecessary data before reading. Background reclustering
operations and automatic delta merges eliminate the need
for manual VACUUM procedures, maintaining efficiency
even under a continuous data stream. Schema evolution is
implemented by adding nullable fields and using a side-by-
side strategy when removing columns, eliminating downtime
even at hundreds of thousands of RPS.

For analytical data marts and machine learning on base
tables, CDC based on the Storage Write API is implemented.
The change log, with exactly-once semantics, is either
materialized in BigQuery or sent to Pub/Sub, ensuring
that consumers receive only deltas. Query optimization is
achieved using the ROW_NUMBER() OVER and TIMELINE_
GAP_FILL operators, employing LAG()/LEAD() or ARRAY_
AGG instead of heavy joins, and BigQuery DataFrames v2 with
partial ordering, which eliminates unnecessary shuffling and
preserves lazy evaluation. Cost control involves a two-phase
profiling approach (EXPLAIN plus INFORMATION_SCHEMA.
JOBS metrics), enabling empirical verification of the impact
of changes on total bytes processed.

A set of ten rules—from mandatory partition filtering and
ingest lag monitoring to judicious column selection for
clustering and replacing string identifiers with surrogate
keys—creates a stable balance between performance and
cost. Eliminating anti-patterns (absence of partition filter,

unsystematic clustering, legacy API usage, JavaScript UDFs,
and cross-region queries) restores performance and cost-
effectiveness. Ultimately, the methods described ensure SLA
levels for latency and budget when handling data streams of
billions of events per day.

references

“Internet of Things and Data Placement,” Dell 1.
Technologies. https://infohub.delltechnologies.com/
en-US/l/edge-to-core-and-the-internet-of-things-2/
internet-of-things-and-data-placement/ (accessed May
01, 2025).

M. Faraz, “What is Google BigQuery Streaming Insert and 2.
Its Working?” Hevo Data, Oct. 25, 2024. https://hevodata.
com/learn/bigquery-streaming-insert/ (accessed May
02, 2025).

“Estimate and control costs,” Google Cloud. https://3.
cloud.google.com/bigquery/docs/best-practices-costs
(accessed May 03, 2025).

S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time Series 4.
Management Systems: A Survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 11, pp.
2581–2600, Nov. 2017, doi: https://doi.org/10.1109/
tkde.2017.2740932.

“Streaming pipelines,” Google Cloud. https://cloud.5.
google.com/dataflow/docs/concepts/streaming-
pipelines (accessed May 04, 2025).

“Upgrade a streaming pipeline,” Google Cloud. https://6.
cloud.google.com/dataflow/docs/guides/upgrade-
guide (accessed May 05, 2025).

“Stream table updates with change data capture,” Google 7.
Cloud. https://cloud.google.com/bigquery/docs/
change-data-capture (accessed May 07, 2025).

“BigQuery subscriptions,” Google Cloud. https://cloud.8.
google.com/pubsub/docs/bigquery (accessed May 07,
2025).

“Introduction to partitioned tables,” Google Cloud. 9.
https://cloud.google.com/bigquery/docs/partitioned-
tables (accessed May 08, 2025).

“Introduction to clustered tables,” Google Cloud. https://10.
cloud.google.com/bigquery/docs/clustered-tables
(accessed May 09, 2025).

“Optimize query computation,” Google Cloud. https://11.
cloud.google.com/bigquery/docs/best-practices-
performance-compute (accessed May 15, 2025).

“BigQuery Pricing,” Google Cloud. https://cloud.google.12.
com/bigquery/pricing (accessed May 17, 2025).

“Use BigQuery DataFrames,” Google Cloud. https://13.
cloud.google.com/bigquery/docs/use-bigquery-
dataframes#version-2 (accessed May 19, 2025).

Page | 43Universal Library of Engineering Technology

Data Warehousing Techniques for High-Cardinality, High-Frequency Time-Series Analytics

“JOBS view,” Google Cloud. https://cloud.google.com/14.
bigquery/docs/information-schema-jobs (accessed May
20, 2025).

“Query partitioned tables,” Google Cloud. https://cloud.15.
google.com/bigquery/docs/querying-partitioned-
tables (accessed Jun. 20, 2025).

“Manage partition and cluster recommendations,” Google 16.
Cloud—https://cloud.google.com/bigquery/docs/
manage-partition-cluster-recommendations (accessed
May 22, 2025).

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

