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This article provides an in-depth examination of contemporary crash detection models integrated into digital mobile 
platforms and Internet of Vehicles (IoV) infrastructures. The study first discusses hardware configurations—including 
accelerometers, GPS modules, and dashcams—and explores how these sensors interact in real-time telematics environments. 
It then delineates the algorithmic frameworks underlying crash detection, contrasting threshold-based heuristics with 
machine learning and deep learning approaches. Further, practical facets such as multi-sensor calibration, federated 
learning for privacy preservation, and adaptable data communication strategies are critically analyzed. The article also 
highlights integration with external service ecosystems (e.g., emergency assistance, insurance) and addresses legal, privacy, 
and standardization challenges surrounding crash detection deployment. Taken together, these investigations elucidate 
the potential of holistic, data-driven systems for reducing false alarms and accelerating life-saving interventions in traffic 
accidents.
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IntroductIon
Crash detection systems are engineered to identify traffic 
collisions in real time, often relying on an array of sensors—
such as accelerometers, GPS modules, and in some cases on-
board cameras—to ascertain the occurrence and severity of 
an accident [2, 9, 14]. Over the past decade, they have proven 
indispensable for reducing the delay between impact and 
emergency response, thus directly affecting victims’ survival 
chances [11]. This effect is amplified in sparsely populated 
or remote regions, where eyewitnesses may be unavailable 
and immediate communication with authorities is difficult [1].

Modern mobile digital platforms have enhanced these 
functionalities, leveraging pervasive cellular networks, 
advanced smartphones, and dedicated vehicle telematics 
devices to capture, analyze, and transmit critical data at 
near-instantaneous speeds [5, 13]. Within this Internet of 
Vehicles (IoV) paradigm, data—ranging from abrupt changes 
in acceleration to real-time video streams—can be shared 
across a distributed infrastructure of vehicles, servers, and 
roadside units [8]. Such integrated systems ensure that crash 
alerts are not only generated rapidly but also disseminated 
to nearby responders and emergency centers in minimal 
time [6]. As a consequence, the efficiency of emergency 

interventions, particularly at night or in adverse conditions, 
is markedly improved.

Despite these developments, traditional accident detection 
approaches—many of which rely on simple thresholding of 
sensor signals—suffer from notable drawbacks [6, 14]. Sudden 
phone drops or sharp braking maneuvers can resemble 
collisions, leading to false positives and misallocation 
of emergency resources [2]. Furthermore, a fragmented 
landscape of data sources (e.g., different in-vehicle sensors 
and external cameras) has made it challenging to fuse large-
scale sensor readings with modern deep learning algorithms 
for robust crash identification [7, 9]. This lack of a unified 
approach hampers both consistency and scalability.

Another obstacle involves communication bottlenecks that 
slow the relay of accident information to emergency services. 
In areas with limited infrastructure or overloaded networks, 
even minor transmission delays may significantly reduce the 
effectiveness of rescue efforts [1]. Consequently, there is a 
pressing need for integrated solutions that merge reliable 
sensor fusion, adaptive network protocols, and advanced 
machine learning techniques to accelerate the detection and 
management of traffic accidents [4].
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This article seeks to address the aforementioned limitations 
in crash detection on mobile digital platforms. Three 
overarching objectives frame the discussion:

Identify and compare frameworks that unify multi-1. 
sensor data streams, collision classification algorithms, 
and near-real-time notification channels, emphasizing 
key design choices and trade-offs.

Demonstrate how sensor fusion—from accelerometers 2. 
and GPS to dashcam-like video—can leverage deep 
neural networks for improved crash detection accuracy, 
while telematics platforms provide the backbone for 
efficient data transfer [5, 13].

Illustrate how a fully integrated deployment—featuring 3. 
on-device data processing, remote analytics, and rapid 
alerting—reduces incident-to-notification intervals, 
thereby increasing survivability in severe crashes [7, 
11].

By fulfilling these objectives, the article provides an overview 
of current technological capabilities and outlines promising 
directions for achieving faster, more reliable, and more 
accurate detection of traffic accidents.

Approaches to the Design and Implementation of 
Crash Detection Systems

Crash detection systems commonly rely on a variety of 

sensors—accelerometers, GPS units, vibration sensors, and 
onboard cameras—to capture events indicative of a collision 
[6, 12]. Accelerometers measure abrupt changes in velocity, 
while GPS data helps estimate real-time speed, location, and 
trajectory, confirming the plausibility of an impact. Vibration 
and gyroscopic sensors add further nuances, distinguishing 
between genuine crashes and minor bumps or braking [2]. 
Video streams from dashcam-like cameras significantly 
reduce false alarms by visually confirming whether a severe 
event is underway [4, 7].

These sensor modules may be integrated into smartphones, 
attached externally to vehicles, or embedded in a vehicle’s 
electronic control unit (ECU). Smartphone-based setups 
utilize the device’s built-in accelerometer and GPS for a basic 
crash detection service—although false positives can arise 
from drops or sudden phone movements [1]. Meanwhile, 
fixed in-vehicle hardware (e.g., dedicated telematics units) 
leverages stable power sources and direct access to the car’s 
CAN bus for richer data. Interfacing with telematics also 
opens the door to real-time communication protocols—
such as LTE, 5G, or DSRC—thereby enabling rapid transfer 
of collision data to cloud services or roadside units, known 
collectively under the Internet of Vehicles (IoV) paradigm [5, 
13]. This holistic architecture supports near-instantaneous 
dispatch of emergency alerts, a vital factor for patient 
survival [14].

Fig 1. Layered crash-detection and notification pipeline integrating multi-sensor edge capture, telematics communication, 
federated analytics, and emergency-service interfaces
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Adapting crash detection solutions to multiple vehicle types (e.g., motorcycles, automobiles, trucks) introduces challenges 
related to distinct vibration patterns and installation constraints [4]. Moreover, the degree of connectivity in urban versus 
rural environments can shift how alerts are transmitted, requiring fallback or hybrid solutions to guarantee message delivery 
[2, 10]. Table 1 compares the main sensor categories used in crash detection.

Table 1. Comparison of the main sensor categories

Sensor Type Measured Quantity Typical Device Advantages Limitations
Accelerometer Changes in velocity/

acceleration
Smartphone IMU or 
dedicated vehicle sen-
sor (onboard ECU)

Real-time detection of 
sudden forces; relatively 
low cost

Prone to false positives 
(phone drops); vibrations 
may mimic collisions [2]

GPS Location, speed, tra-
jectory

Smartphone GPS, au-
tomotive-grade GNSS 
receiver

Precise speed and location 
data; easy integration into 
mobile devices

Accuracy may degrade in 
tunnels, dense urban areas 
[11]

Vibration/Gyro 
Sensor

Rotational forces and 
micro-tremors

Embedded MEMS 
sensor, IMU module 
in car or phone

Distinguishes real colli-
sions from simple braking; 
improves detection rates

Sensor drift over time; might 
require calibration for dif-
ferent road conditions [12]

Dashcam (Cam-
era Feed)

Visual confirmation 
of accidents

Front-facing camera 
or dashcam unit

Reduces false alarms via 
image analysis; aids in ac-
cident reconstruction

Increased power consump-
tion; demands higher band-
width/storage [4, 7]

From an algorithmic perspective, the simplest methods 
employ predefined thresholds on accelerometer or vibration 
readings. For instance, an abrupt acceleration exceeding ±4 g 
coupled with a sudden velocity drop can constitute a collision 
event [9]. While easy to implement, these fixed thresholds 
often produce false alarms—particularly on bumpy roads 
or when a phone is dropped [1]. More advanced classical 
machine learning techniques, such as Support Vector 
Machines (SVMs) or Random Forests, rely on labeled datasets 
(“crash” vs. “non-crash”) to learn patterns from multi-sensor 
signals [14]. They typically outperform static thresholds but 
still demand careful feature engineering and robust training 
sets [11].

Deep neural networks substantially reduce the need for 
manual feature design by learning representations from raw 
sensor data or video frames [7, 12]. Convolutional Neural 
Networks (CNNs) can spot anomalies in dashcam footage—
like sudden forward impacts—while autoencoders or 
transformer-based architectures detect out-of-distribution 
signals in accelerometer data, flagging them as potential 
collisions [4]. Although these methods excel in complex 
scenarios, they typically require extensive computational 
resources and large annotated datasets [3].

Integration into mobile digital platforms involves three 
major layers: local data capture, cloud-based analysis, and 
emergency notification. The local or in-vehicle layer acquires 
sensor inputs and performs initial filtering. When a potential 
collision is detected, telematics controllers forward data to 
the cloud via low-latency channels (e.g., LTE/5G or Wi-Fi), 
expediting the classification process [2, 13]. If validated 
as a genuine crash, the system rapidly alerts emergency 
services, relevant roadside units, and possibly nearby users, 
furnishing them with geolocation data [14]. Multi-sensor 
verification significantly curbs false alerts by requiring 

consistent evidence across sources—acceleration spikes, 
GPS-based speed drops, and dashcam confirmation [4]. Over 
time, continuous learning refines detection thresholds and 
classification boundaries, accommodating changes in road 
conditions or vehicle usage [10].

Ultimately, these approaches underscore the need for an 
all-encompassing design that marries reliable sensors and 
communication pipelines with sophisticated analytical 
models. By doing so, modern crash detection systems 
can simultaneously reduce false alarms and accelerate 
emergency response, thus improving the likelihood of 
favorable outcomes in traffic accidents.

Practical Aspects and Implementation

Implementing a robust crash detection system entails not 
only identifying suitable sensors and algorithms but also 
ensuring that these components function reliably under 
diverse conditions. This section discusses the optimization 
of crash detection algorithms, strategies for reducing false 
positives, the integration of federated learning paradigms, 
and the broader ecosystem of mobile services. In addition, 
it examines the privacy, legal, and infrastructural challenges 
surrounding advanced crash detection solutions.

A primary consideration is the careful calibration of sensors—
accelerometers, GPS units, and potential dashcams—to 
operate effectively with minimal power consumption 
and in environments where network connectivity may be 
intermittent [2, 12]. Systems designed for rural or remote 
regions often adopt intermittent synchronization schemes, 
storing events locally when no cellular network is available 
and transmitting them once connectivity is restored [10]. 
In urban contexts, continuous streaming from sensors can 
leverage high-bandwidth 4G/5G links but must still handle 
potential congestion or interference [5].
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Table 2 highlights key considerations for choosing and calibrating sensor configurations in varying environments, illustrating 
typical sensor usage, data resolution, and deployment constraints.

Table 2. Key considerations for choosing and calibrating sensor configurations in varying environments

Parameter Urban High-Bandwidth Area Remote/Low-Bandwidth Area Key Optimization
Accelerometer Sampling 
Rate

High (≥200 Hz) for granular 
collision data

Medium (≈50–100 Hz) to 
conserve battery

Dynamic adjustment based 
on road type [4]

GPS Update Frequency 1 s or faster to track fine-
grained movements

5–10 s to reduce data overhead Trigger-based increase if 
abrupt acceleration detected

Camera/Dashcam Video HD or Full HD streaming Event-based capture (on 
collision threshold)

Limits power usage and 
bandwidth [7]

Data Transmission Continuous 4G/5G uploads Store-and-forward (caching 
until coverage)

Automated fallback to Wi-Fi 
or caching [2]

In addition to sensor calibration, multi-sensor fusion is crucial for reducing spurious alarms. Traditional threshold-based 
algorithms often flag intense deceleration as a collision, even if it is caused by abrupt but non-critical maneuvers [1]. By 
correlating accelerometer spikes with simultaneous GPS speed drops, camera-based confirmation of road obstacles, and a 
short historical data window, systems can more reliably classify events as true collisions [4]. Historical pattern matching—
where the current sensor readings are compared to previously labeled accident or non-accident traces—further refines 
decisions.

Federated learning (FL) addresses both privacy and adaptive performance in crash detection [7]. Instead of uploading 
raw sensor data to a central server, local models are trained on individual vehicles or devices; only the aggregated weight 
updates are shared. This approach preserves personal data privacy—especially video frames—while allowing the global 
crash detection model to learn from a wide range of driving patterns. As roads, climates, and user behaviors differ between 
regions, FL helps each node improve detection accuracy without compromising sensitive information.

Table 3 summarizes some core principles in federated learning that can be leveraged for crash detection, indicating typical 
training approaches, communication intervals, and security measures.

Table 3. Core principles in federated learning for crash detection

Federated Learning 
Principle

Application to Crash 
Detection

Challenges Proposed Solutions

On-Device Model 
Training

Local sensor data remain on 
each vehicle or smartphone

Limited computing power 
on-edge

Lightweight deep learning architectures 
with pruning [10]

Periodic Parameter 
Aggregation

Global model improved by 
merging local updates [7]

Heterogeneity in data 
distribution

Clustering or hierarchical FL to handle 
different vehicle/road types [4]

Privacy Preservation Minimizes transfer of raw 
driving data

Possible reconstruction 
attacks on gradients

Secure multiparty computation or 
differential privacy 

Adaptive Retraining Continuous improvement of 
crash detection thresholds

Bandwidth overhead from 
frequent updates

Scheduled communications; compressing 
gradients or updates [2]

State-of-the-art crash detection solutions increasingly 
interact with external entities such as emergency services, 
insurance platforms, or roadside assistance communities 
[14]. By publishing crash alerts to these networks, the system 
enables coordinated rescue or on-scene support. Many 
deployments incorporate an optional user consent module 
that, once triggered, shares geolocation and event logs with 
insurance providers for accelerated claims processing [6, 8].

A widely adopted approach includes group-based alerts: 
when a severe accident is detected, the system broadcasts a 
notification to other users within a predefined radius. These 
users receive push alerts or messages, enabling immediate 
assistance or hazard warnings for approaching vehicles. 
Text-based or chatroom-like channels can also facilitate real-
time updates, allowing bystanders to confirm or disprove the 

severity of the event [2]. Additional features might include 
real-time communication with emergency responders and 
structured handovers of dashcam footage to clarify the 
situation.

Furthermore, advanced expansions—like fatigue or 
intoxication detection—can be integrated into the same 
framework [3]. Real-time camera streams can apply facial 
recognition or posture analysis to detect driver drowsiness, 
while sensor fusion monitors erratic lane-keeping. Once 
a risk threshold is exceeded, warnings or partial driving 
interventions can activate [4]. In line with emerging 
regulations in many regions, extended eCall protocols 
standardize how these systems place automated calls to 
public safety answering points (PSAPs), ensuring streamlined 
data formats and cross-border interoperability [10].
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Despite these potential benefits, crash detection systems 
raise critical questions of privacy, safety, and standardization. 
Detailed sensor data—particularly video frames and 
near real-time location—may contain sensitive personal 
information [1]. Without appropriate anonymization or 
encryption, unauthorized parties could misuse this data. 
Lawmakers in various jurisdictions are exploring how to 
regulate data access, prompting solutions like end-to-end 
encryption or on-edge data filtering.

From a legal standpoint, standardization is also paramount. 
The introduction of eCall in the European Union mandates 
uniform protocols for emergency notifications [8]. 
Adopting similar frameworks globally would likely require 
collaboration among automotive OEMs, mobile operators, 
and governments to ensure that vehicles adhere to consistent 
telematics rules and certification processes [4, 11]. 
Additionally, continuous improvements in cloud computing 
and edge analytics promise further refinements in near crash 
detection. Offloading partial computations to edge devices 
can lower latency and improve responsiveness [13].

In summary, crash detection systems are evolving toward 
highly integrated, privacy-preserving, and scalable solutions 
that combine advanced sensors, machine learning, and real-
time networking to enhance road safety. Balancing these 
technological possibilities with the need for data protection, 
legal harmonization, and inclusive coverage across diverse 
vehicle types remains a pivotal challenge for future research 
and implementation efforts.

conclusIon
Modern crash detection systems are characterized by 
comprehensive, multi-sensor architectures that combine 
accelerometers, gyroscopes, GPS, and camera-based inputs. 
The emergent trend involves the convergence of deep learning 
and advanced telematics, allowing for complex anomaly 
identification and real-time event reporting over robust IoV 
networks. Key to improving system reliability are adaptive 
sampling and calibration mechanisms that minimize power 
consumption, as well as federated learning approaches 
that address privacy and scalability. Equally significant 
is the broader ecosystem integration: interoperability 
with emergency services, insurance platforms, and other 
stakeholders facilitates prompt medical response and 
streamlined accident investigation. Challenges remain in 
ensuring legal compliance, standardizing protocols such as 
eCall, and safeguarding users’ personal data, particularly 
when camera or high-resolution sensor information is 
involved. Nonetheless, continued progress in communication 
technologies, cloud/edge computing, and distributed 
artificial intelligence indicates that near-instantaneous 
crash detection with minimal false positives is increasingly 
feasible. Future work will likely extend these techniques to a 

wider range of transportation modes and leverage real-time 
situational context for even more precise and rapid accident 
response.
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