
Page | 6www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 3

Open Access | PP: 06-11

DOI: https://doi.org/10.70315/uloap.ulete.2025.0203002

Universal Library of Engineering Technology Research Article

Infrastructure Automation in Cloud Environments Using Terraform
Diyorjon Holkuziev
DevOps Engineer and Technical Lead at Brilom Inc., Boston, Massachusetts, United States.

The article examines the principles and practices of automating the deployment and management of cloud infrastructure
using Terraform. The relevance of this study is determined by the rapid increase in complexity of cloud environments and the
risk of numerous incidents arising from manual configurations. Misconfigurations have become one of the leading causes
of outages and data breaches. Accordingly, automating resource provisioning and management becomes a critical task to
ensure reproducibility, security, and accelerated time-to-market. The objective of this work is to conduct a comprehensive
analysis of Terraform’s capabilities as a leading Infrastructure as Code tool for cloud-environment automation, to identify
its advantages over alternative solutions (Pulumi, CloudFormation, Ansible), and to assess the impact of HashiCorp’s latest
features and services on infrastructure lifecycle management efficiency. The novelty of this research lies in an integrated
review of Terraform’s latest extensions: the introduction of provider-defined functions in version 1.8, the Stacks concept
in HCP Terraform, background health assessments for drift detection, the module lifecycle management mechanism, and
the HCP Terraform Premium plan uniting centralized migration, policy enforcement, and full change traceability. The
methodological basis comprises comparative analysis, a systematic review of documentation, and content analysis of
CI/CD integration practices. The main findings show that the declarative model and dry-run mechanism of Terraform
ensure determinism of change and easier auditing; the unified state file and remote backends ensure consistency across
all deployments. The wide provider ecosystem and modular architecture enable the rapid scaling of multi- and hybrid-
cloud environments. Integration with GitHub Actions, Azure Pipelines, GitLab CI, and Bitbucket Pipelines via OIDC enhances
security. New lifecycle management and drift-control capabilities transform Terraform into a full-fledged Infrastructure
Lifecycle Management platform, reducing operational risk without cost escalation. This article will be useful for DevOps
engineers, SREs, and cloud architects responsible for infrastructure automation and secure operations.

Keywords: Terraform, Infrastructure as Code, Multi-Cloud Environments, Declarative Model, Drift Detection, CI/CD, OIDC.

Abstract

Citation: Diyorjon Holkuziev, “Infrastructure Automation in Cloud Environments Using Terraform”, Universal Library of
Engineering Technology, 2025; 2(3): 06-11. DOI: https://doi.org/10.70315/uloap.ulete.2025.0203001.

IntroductIon
Modern cloud environments are becoming increasingly
complex, as a single enterprise system can encompass
hundreds of services, dozens of regions, and multiple
providers. In such a dynamic context, manual resource
provisioning and maintenance not only impede time-to-
market but also pose direct business risks. Gartner analysts
predict that by the end of 2025, 99% of all incidents in
public clouds will be caused by customer errors, primarily
misconfigurations [1]. The financial stakes are corroborated
by IBM’s Cost of a Data Breach 2024 report: already, 40%
of breaches involve data distributed across multiple
environments, where control is particularly challenging [2].

The primary root of such losses is the lack of reproducibility.
Every change made via console or CLI is introduced by a
human operator, causing production state and documentation

to diverge rapidly; this configuration drift complicates
auditing and scaling. Infrastructure as Code (IaC) does so
by specifying the target infrastructure in a format that is
readable by machines. Furthermore, this approach promotes
development practices within operations, including version
control, code review, automated testing, and continuous
integration.

Terraform is basically an Infrastructure as Code tool, and
therefore the most popular. According to [3], Terraform
leads 32.8% of IaC projects globally, thereby establishing
itself as an uncontested leader in infrastructure automation
solutions. Its popularity stems from a declarative model:
engineers specify the desired outcome, while Terraform
generates the execution plan across various clouds and on-
premises platforms. A unified HCL language and over three
thousand providers enable the description, within a single

Page | 7Universal Library of Engineering Technology

Infrastructure Automation in Cloud Environments Using Terraform

repository, of an AWS VPC, an Azure Kubernetes cluster, and
Google Cloud functions, all while maintaining a cohesive state
in a distributed backend. Thus, Terraform not only automates
mechanical tasks but also establishes a contract between
development and operations teams, reducing the probability
of errors to acceptable levels and supporting exponential
growth of cloud workloads without a proportional increase
in operational costs.

MaterIals and Methodology

This study is based on the analysis of 20 sources, including
Gartner’s forecast of public-cloud incidents caused by
customer errors [1], IBM’s report on data-compromise
incidents in multi-environment settings [2], global Terraform
usage statistics [3], an overview of provider-defined functions
introduced in version 1.8 [4], materials on the Stacks concept
in HCP Terraform [6], background health assessments for
infrastructure drift detection [7], and the HCP Terraform
Premium plan expanding lifecycle management capabilities
[8].

The theoretical foundation comprises research elucidating
the key principles of Infrastructure as Code and Terraform’s
role among automation tools: a comparative analysis of
Pulumi, CloudFormation, and Terraform demonstrating
Terraform’s market share [3, 5]; a review of the declarative
model and dry-run mechanism ensuring change determinism
[9]; descriptions of the Terraform Registry’s ecosystem
capabilities [5]; and materials on modular resource lifecycle
management and secure API refactoring [20].

Methodologically, the study integrates a comparative analysis
of Infrastructure as Code tools—juxtaposing Terraform’s
declarative model [3, 5] with Pulumi’s imperative approach
and CloudFormation’s ecosystem lock-in—a systematic
review of HashiCorp’s official documentation covering
the core workflow, secure state and sensitive-data storage
[9–11], and configuration and workspace management
in Terraform Enterprise [12, 20], a content analysis of CI/
CD practices—including Terraform integration into GitHub
Actions via OIDC federation [14, 15], Azure Pipelines [16],
GitLab CI [17], and Bitbucket Pipelines [18]—an evaluation
of resource-drift control mechanisms such as background
health assessments [7] and module lifecycle management
[8], and an examination of DevSecOps approaches along with
automated infrastructure validations [13].

results and dIscussIon

Terraform attracts attention primarily for its declarative
model: an engineer describes the desired state, and the
planner automatically computes the order of actions and
verifies that the operations will bring the system exactly
to that goal. This dry-run approach ensures determinism,
allows peer review of forthcoming changes, and reduces
the likelihood of errors in the operational lifecycle. With the
release of version 1.8, the mechanism became even more

flexible: configurations can now invoke provider-defined
functions—extensions supplied by the provider itself
and executed at planning time—removing limitations on
embedding complex logic without external scripts [4].

A decisive factor remains the ecosystem. The public Terraform
Registry hosts over 5,000 providers, covering not only AWS,
Azure, and GCP but also SaaS platforms, network equipment,
and on-premises solutions [5]. Thanks to this breadth,
Terraform has secured a leading position in the global IaC
tool market, significantly outpacing its nearest competitors.
In multi-cloud scenarios, this advantage becomes critical: a
single repository can describe infrastructure across multiple
providers simultaneously, while a unified state file maintains
consistency.

The platform’s extensibility is not limited to functions. Users
can package recurring patterns into modules, and providers
can add their resources without needing to rebuild the core.
Unlike AWS CloudFormation, which is tightly bound to a single
ecosystem, and Pulumi, where infrastructure is described
with imperative code, Terraform remains cloud-agnostic and
requires minimal programming skills. Compared to Ansible,
which is geared toward configuring existing instances,
Terraform operates on the lifecycle of resources themselves
and persists their state, which is crucial for large-scale cloud
environments.

Over the past four years, the evolution of the 1.x series
has aimed to narrow the gap between declarative intent
and operational reality. In addition to provider-defined
functions, versions 1.6–1.8 introduced a secure refactoring
API and the native Terraform test command for writing unit
tests for modules. The next step is the concept of Stacks. In
HCP Terraform, a stack group related workspaces defines
orchestration rules among them, and permits deferring
the application of plan segments, thereby simplifying the
coordination of complex releases [6].

In the managed HCP Terraform service, background health
assessments now regularly compare actual infrastructure
against the state file and signal resource drift caused by
manual changes or cloud-provider issues [7]. The module
lifecycle management feature provides an additional maturity
layer, allowing administrators to mark module versions as
deprecated or revoked, thereby forcing consumers to migrate
to supported versions and preventing regressions [8].

Finally, the development trajectory is defined by the transition
from simple declarative orchestration to full Infrastructure
Lifecycle Management. In May 2025, HashiCorp introduced
the HCP Terraform Premium plan, which includes automated
migrations from the local CLI, centralized policies, and
end-to-end change traceability—all designed to reduce
operational risks when working with hybrid and multi-cloud
architectures [8]. Terraform, hence, does not balance her
stake as just a resource description language, but also as the

Page | 8Universal Library of Engineering Technology

Infrastructure Automation in Cloud Environments Using Terraform

underpinning of a managed infrastructure change pipeline,
wherein plan, validate, apply, and drift control are parts of a
single chain.

The Terraform lifecycle is a deterministic sequence of actions:
write → init → plan → apply → destroy. An engineer writes the
desired infrastructure state and then runs Terraform init to
download plugins and prepare the backend. The’ terraform
plan’ command computes the change graph, showing which
resources will be created, modified, or destroyed; this
allows for review before any production intervention. After
approval, Terraform applies the plan atomically, and for a full
teardown, Terraform destroy is used. This model minimizes
manual errors and ensures reproducible changes [9].

Reliable state management ensures the correctness of
this cycle. The state file contains all attributes of managed
resources, so storing it locally creates a single point of failure
and a data-leak risk. It is recommended to offload state to
a remote backend. HCP Terraform encrypts it at rest and
secures it via TLS in transit, maintains a version history, and
tracks change authors. Meanwhile, the S3 backend supports
KMS encryption, object versioning, and DynamoDB-backed
locking to prevent concurrent writes. All operations that may
alter the state automatically acquire a lock to avoid corruption.
HashiCorp Well-Architected Framework practices explicitly
forbid storing state files in code repositories [10, 11].

For large projects, configurations are divided into modules.
A module encapsulates a recurring resource pattern, accepts
input variables, produces output values, and may reference
local computations. This abstraction reduces code volume,
simplifies testing, and enables versioned releases to public
or private registries; Terraform grabs the version needed
and locks it in a file. This way, you can count on consistent
builds.

The structure of the repository affects the scalability of the
process. HCP Terraform allows both—monorepo (more
than one directory in a single repository) and polyrepo
(independent repositories). In a monorepo, each workspace
must specify its working directory and include shared
modules in its file-trigger list; in a polyrepo, separate
repositories enable releasing new versions of modules
without updating all consumers at once. HashiCorp docs
recommend using polyrepo unless there is a compelling
reason for monolith because it speeds up CI processes and
TEAM CONFLICT has less RISK [12].

A further safeguard is given by background drift in HCP
Terraform which does this periodic comparison between the
actual state of the cloud and the expected state and alerts if
resources have been altered manually or as a result of service
degradation.Detected drift can be exported in a report and
addressed through the standard plan/apply cycle, preserving
the integrity of the infrastructure contract between code and
reality [7].

Infrastructure as Code brings to the operations layer the
same pace of change as it does to the application layer;
consequently, it is logical that its primary transport becomes
a full-fledged CI/CD pipeline. A study of DevSecOps practices
among 405 organizations revealed that 68% already perform
automated infrastructure checks on every commit, and a
further 12% plan to implement such checks within a year,
as manual procedures are recognized as one of the main
impediments to continuous delivery [13], as shown in Fig. 1.

Fig. 1. Prevalence, Impediments, and Automation Gaps in
Organizational DevSecOps Adoption [13]

The practical inference from these data is straightforward:
the advantage of rapid and reliable infrastructure changes
manifests only when Terraform is invoked automatically and
triggered by the same events as application tests.

GitHub Actions provide a typical example. In the workflow, a
single job is defined that first validates source code, then runs
hashicorp/setup-terraform—locking the CLI version and
caching providers—after which it executes terraform init,
terraform plan, and, subject to review, terraform apply. To
mitigate operational risk, permanent AWS keys are replaced
by federation via OpenID Connect: GitHub issues a short-
lived JWT, AWS STS exchanges it for temporary credentials,
and permissions are granted via an IAM role bound to the
repository. This approach removes static secrets from the
repository, automatically limits the lifespan of tokens, and
adheres to the principle of least privilege [14, 15].

Alternative platforms implement the same sequence using
analogous commands. Azure Pipelines utilizes the Terraform
Installer task, and authentication can occur either via a
service principal or through OIDC, thereby eliminating
the need for manual certificate management [16]. GitLab
CI provides a built-in validate-plan-apply component that
incorporates validation, planning, and apply stages, records
the plan as an artifact, and displays it in the merge request
interface; by default, state is stored in a protected object
store, though any backend may be specified, including HCP
Terraform or S3 [17], as illustrated in Fig. 2.

Page | 9Universal Library of Engineering Technology

Infrastructure Automation in Cloud Environments Using Terraform

Fig. 2. Declarative CI/CD Pipeline Configuration for
Terraform Workflows with OpenTofu Integration [17]

Bitbucket Pipelines follows the same steps, also leveraging
OIDC federation for AWS access, which is configured via a
CloudFormation template or the IAM console. Temporary
credentials are injected into the container executing’
terraform apply’ and automatically expire upon completion
of the step [18]. In every case, the pipeline remains concise:
Terraform drives the logic, and the CI system orchestrates
invocations and stores artifacts.

A key security element is the complete elimination of
long-lived secrets. The OIDC flow has become an industry
standard: GitHub, GitLab, and Bitbucket emit a signed token
containing the repository and branch hashes, which the
cloud provider maps to an IAM role. As a result, permissions
are granted solely to the workflow performing validation
and planning of the Terraform configuration, minimizing the
risk of unauthorized access or secret leakage [14, 19]. The
following example in Fig. 3 illustrates exchanging an OIDC
ID token with Azure to obtain an access token for accessing
cloud resources.

Fig. 3. Exchanging an OIDC ID token with Azure to receive
an access token [19]

Ultimately, the decision between HCP Terraform and a self-
hosted backend hinges on the control versus operational
cost trade-off. The managed service offers VCS integration,
automatic plan distribution across workspaces, background
drift detection, and health assessments. When the actual
state deviates from the declared state, it opens a pull request
with a corrective plan, thereby closing the GitOps loop. Self-
hosted Terraform Enterprise delivers the same functionality
but is deployed within the corporate network segment—
critical under stringent regulatory or export controls; the
user gains full control over versioning, hardware scaling, and
Sentinel policies, but assumes responsibility for operating
the Postgres database, Nomad queue, and object storage [20].
In both cases, the backend remains the single source of truth,
and the CI pipeline retains only a reference to the workspace.
Therefore, migrating between SaaS → self-hosted or vice
versa requires no pipeline rewrites, affording organizations
flexibility in risk management.

Practical infrastructure automation almost invariably begins
with establishing the network perimeter, since proper
segmentation underpins availability and enforcement of
security policies. In Terraform, these tasks are addressed
by a standard virtual private network module, which
encapsulates the creation of subnets, route tables, NAT
gateways, and traffic logs. The engineer specifies only logical
parameters—names, tags, access tiers—and receives a
reproducible topology that can be redeployed across regions
and scaled without altering the overall code structure.

The next natural step is the deployment of a container
orchestrator. Kubernetes has long been regarded as the
standard for cloud-native workloads, and the Terraform
ecosystem provides ready-to-use modules for various
providers, allowing one to describe a cluster, node pools,
and network policies in the same HCL language. This
consolidation within a single repository eliminates version
mismatches between the networking and compute layers.
The cluster is provisioned by a single command alongside
the underlying infrastructure, and access to image registries
and load balancers is configured automatically via resource
graph dependencies.

Immediately following the compute layer, observability
components are added so that the platform does not remain
silent. Monitoring and logging modules leverage the cloud’s
native services: system metrics are sent to a managed
store, logs are collected by an agent and sent to streaming
processors or a centralized repository. All configuration is
defined in code, so when a new environment is instantiated,
alerting parameters, collection intervals, and retention
policies are inherited without additional effort. This ensures
support teams receive a homogeneous signal path for
incident investigation.

The final element of typical scenarios is the isolation
of development, testing, and production lifecycles. The
recommended practice is to associate a separate working

Page | 10Universal Library of Engineering Technology

Infrastructure Automation in Cloud Environments Using Terraform

directory or module with a distinct Terraform workspace,
thereby separating states and allowing independent release
cadences. Developers may freely experiment within their
workspace, automated checks run against the staging
environment, and production-contour changes are permitted
only from a protected branch after review. This maintains a
single point of truth and avoids mixing settings across steps,
which reduces the likelihood of errors and makes it faster
to revert to a good state. If you sum up Terraform’s main
benefits—from how it describes what should be, having a
single state file to an able system that offers and links well with
CI/CD—it is clear this tool cuts down on risk in operations
and quickens time-to-market. The capabilities afforded
by provider-defined functions and modular architecture,
together with built-in drift detection mechanisms, form
a robust foundation for scalable, controlled automation.
OIDC federation integration, along with state management
via HCP Terraform or a self-hosted backend, provides high
levels of security and flexibility when operating in hybrid
and multi-cloud environments. Collectively, these features
transform Terraform from a mere orchestration tool into
a comprehensive Infrastructure Lifecycle Management
platform, in which planning, validation, application, and
change control are unified into a single, deterministic chain.

conclusIon
This study has proved that using Terraform as an IaC tool
greatly improves the trustworthiness and foresight of
managing cloud infrastructure. The described resource-state
model and included dry-run planning mechanism make
sure that any changes are deterministic and keep the risks
of human errors at a minimum, shown by the coming in of
provider-defined functions and a safe refactoring API. The
presence of a single state file and remote backend solutions
guarantees state integrity and consistency. At the same time,
background drift analysis and health assessments enable
the timely detection and correction of deviations from the
declared configuration.

Terraform’s ecosystem—comprising over 5,000 providers
and a modular architecture—simplifies integration with
diverse cloud and on-premises solutions. The ability
to package patterns into reusable modules accelerates
development and testing. Integration with CI/CD pipelines
(GitHub Actions, Azure Pipelines, GitLab CI, Bitbucket
Pipelines) and the use of an OIDC authentication flow
eliminate long-lived secrets, adhering to the principle of
least privilege, and markedly improve the security posture
of the operational environment.

The platform’s evolution toward Infrastructure Lifecycle
Management—from discrete apply/destroy operations
to a full cycle of planning, validation, application, and
monitoring—positions Terraform as the foundation of
a managed infrastructure-change pipeline. The Stacks
concept in HCP Terraform which has Centralized Policy
Enforcement, Automated Migrations, and Centralized

Drift-Control Services creates a unified contract between
development and operations. This allows the scaling of
cloud workloads without increasing operational costs
proportionally. Therefore, this research confirms that the
adoption of Terraform will not only address the challenges
of reproducibility and configuration control in complex
multi- and hybrid-cloud environments but will also enable
the foundation for continuous automated infrastructure
management.

references
V. Nedunoori, “The Cost of Cloud Misconfigurations: 1.
Preventing the Silent Threat,” Information Week, Dec.
02, 2024. https://www.informationweek.com/it-
infrastructure/the-cost-of-cloud-misconfigurations-
preventing-the-silent-threat (accessed May 22, 2025).

J. Gregory, “2024 cloud threat landscape report: How 2.
does cloud security fail,” IBM, Jan. 22, 2025. https://www.
ibm.com/think/insights/2024-cloud-threat-landscape-
report-how-does-cloud-security-fail (accessed May 23,
2025).

“Pulumi vs. Terraform vs. CloudFormation: Which IaC 3.
Tool is Best for Your Infrastructure?” Firefly, 2024.
https://www.firefly.ai/academy/pulumi-vs-terraform-
vs-cloudformation-which-iac-tool-is-best-for-your-
infrastructure (accessed May 24, 2025).

M. Campbell, “Terraform 1.8 Adds Provider-Defined 4.
Functions, Improves AWS, GCP, and Kubernetes
Providers,” InfoQ, May 02, 2024. https://www.infoq.
com/news/2024/05/terraform-provider-functions/
(accessed May 26, 2025).

“Providers,” Terraform. https://registry.terraform.io/5.
browse/providers (accessed May 26, 2025).

“Stacks overview,” HashiCorp Developer, 2024. https://6.
developer.hashicorp.com/terraform/cloud-docs/stacks
(accessed May 27, 2025).

“Use health assessments to detect infrastructure 7.
drift,” HashiCorp Developer, 2024. https://developer.
hashicorp.com/terraform/tutorials/cloud/drift-
detection (accessed May 28, 2025).

“HashiCorp Expands Unified Lifecycle Management 8.
for Hybrid Cloud,” Globe Newswire News Room,
2025. https://www.globenewswire.com/news-
release/2025/06/03/3092497/0/en/HashiCorp-
Expands-Unified-Lifecycle-Management-for-Hybrid-
Cloud-Operations.html (accessed May 29, 2025).

“Overview of the core,” HashiCorp Developer, 2024. 9.
https://developer.hashicorp.com/terraform/intro/
core-workflow (accessed May 30, 2025).

“Backend Type: s3,” HashiCorp Developer, 2024. 10.
https://developer.hashicorp.com/terraform/language/
backend/s3 (accessed Jun. 01, 2025).

Page | 11Universal Library of Engineering Technology

Infrastructure Automation in Cloud Environments Using Terraform

“State: Sensitive Data,” HashiCorp Developer, 2024. 11.
https://developer.hashicorp.com/terraform/language/
state/sensitive-data (accessed Jun. 02, 2025).

“Manage Terraform configurations,” HashiCorp 12.
Developer, 2024—https://developer.hashicorp.com/
terraform/enterprise/workspaces/configurations
(accessed Jun. 03, 2025).

J. Cheenepalli, J. D. Hastings, K. M. Ahmed, and C. Fenner, 13.
“Advancing DevSecOps in SMEs: Challenges and Best
Practices for Secure CI/CD Pipelines,” arXiv, 2025.
https://arxiv.org/abs/2503.22612 (accessed Jun. 04,
2025).

“OIDC federation,” AWS Identity and Access Management, 14.
2025. https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_roles_providers_oidc.html (accessed Jun.
05, 2025).

“Configuring OpenID Connect in Amazon Web Services,” 15.
GitHub Docs, 2025. https://docs.github.com/en/actions/
security-for-github-actions/security-hardening-your-
deployments/configuring-openid-connect-in-amazon-
web-services (accessed Jun. 06, 2025).

“Overview of Terraform on Azure,” Microsoft, Nov. 16.
11, 2024. https://learn.microsoft.com/en-us/azure/
developer/terraform/overview (accessed Jun. 06,
2025).

“Infrastructure as Code with OpenTofu and GitLab,” 17.
Gitlab. https://docs.gitlab.com/user/infrastructure/
iac/ (accessed Jun. 06, 2025).

“Deploy on AWS using Bitbucket Pipelines OpenID 18.
Connect,” Atlassian. https://support.atlassian.com/
bitbucket-cloud/docs/deploy-on-aws-using-bitbucket-
pipelines-openid-connect/ (accessed Jun. 07, 2025).

“Configuring OpenID Connect in Azure,” GitHub Docs, 19.
2025. https://docs.github.com/en/actions/security-for-
github-actions/security-hardening-your-deployments/
configuring-openid-connect-in-azure (accessed Jun. 09,
2025).

“Terraform Editions,” HashiCorp Developer, 2024. 20.
https://developer.hashicorp.com/terraform/intro/
terraform-editions (accessed Jun. 09, 2025).

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

