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This article is devoted to the generalization and systematization of the principles of nonlinear phase detection (NPD) applied 
to calibration optimization in mass-production testing of diverse products. The relevance of the topic arises from escalating 
demands for metrological accuracy and test throughput on high-performance production lines, where classical amplitude-
based approaches have exhausted their potential. The novelty of this work lies in an interdisciplinary comparison of the ten 
most recent studies—from deep-network detectors for NPD to in-sample phase calibration in LC-MS. The analysis describes 
hardware platforms (optical systems, MEMS, DEPFET imagers, Li-ion cells) and algorithmic strategies (DNN, CMA-ES, 
GA-PSO, U-Net), examines characteristic nonlinearities, and explores methods for their phase-based suppression. Special 
attention is paid to the scalability of procedures and reduction of systematic error in serial manufacture. The objective is 
to formulate unified rules for NPD; to this end, comparative, content-analytic, and inductive methods are employed. The 
conclusion summarizes gains in accuracy and cycle time. This article will benefit metrology engineers, sensor developers, 
automation specialists, and researchers of optimization algorithms.
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INTRODUCTION
The growing integration of intelligent sensors, high-speed 
measurement cameras, and flexible manufacturing cells 
imposes unprecedented requirements on calibration 
accuracy and speed. Linear amplitude-based techniques no 
longer provide the necessary balance between throughput 
and metrology, leading researchers to nonlinear phase 
detection, which treats cumulative errors as a phase vector 
and eliminates them in a single procedure.

The aim of this work is to formulate general principles for 
applying NPD to calibration optimization in mass production.

Tasks

Conduct an interdisciplinary review of modern hardware 1. 
platforms (ATLAS DNN calibration, holographic 
quantitative phase imaging, MEMS-IMU, DEPFET 
imager, Li-ion P2D models) and identify the types of 
nonlinearities addressed by the phase-based approach.

Compare algorithmic strategies (ResNet-50, CMA-ES, 2. 
GA-PSO, U-Net, isotopic IPD calibration) in terms of 
accuracy, convergence time, and suitability for inline 
processes.

Formulate unified rules for implementing NPD 3. 
that ensure method reproducibility without loss of 
metrological performance.

The novelty of the article consists in the systematic synthesis 
of heterogeneous studies from 2022–2025 and in deriving 
universal recommendations that cover both the hardware 
and software aspects of calibration.

MATERIALS AND METHODS
G. Aad [1] evaluated a deep neural network for simultaneous 
energy and mass calibration of large-radius jets in the ATLAS 
detector, demonstrating a reduction in combined error and 
approximately 30 % improvement in energy resolution for pₜ 
> 500 GeV, which also shortened manual tuning time. Z. Huang 
[2] developed a hybrid quantitative phase-imaging scheme 
based on digital holography, achieving axial sensitivity below 
1 nm and robustness against temperature gradients—critical 
for inline monitoring of thin‐film structures. F. Mazzeo 
[3] introduced a methodology for static, dynamic, and 
aging calibration of a Li-ion cell’s P2D model parameters, 
attaining a relative root-mean-square error (RRMSE) below 
2 % in multi‐cycle tests. A.‐L. Nicusan [4] created the ACCES 
framework, applying CMA-ES evolutionary algorithms and 
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metaprogramming for nonlinear calibration of discrete-
element granulation models, reducing the RMSE of simulated 
particle flows. J. D. Pereira [5] systematically classified static 
and dynamic calibration methods for strain-gauge pressure 
sensors, emphasizing the influence of frequency band on 
phase-lag measurement. E. Prinker [6] devised a two-level 
pixel‐calibration procedure for an ultrafast DEPFET X‐ray 
imager, eliminating the “ghost‐charge” effect and improving 
matrix‐response uniformity. B. Renger [7] synthesized 
validation criteria for thin-layer and high-performance 
liquid chromatography, introducing a phase-migration 
coefficient to control interlaboratory reproducibility. X. 
Ru [8] surveyed current calibration techniques for MEMS-
based inertial sensors, highlighting the role of nonlinear 
phase representations of drift and scale in multistage 
mass‐production setup. C. J. Taylor [9] reviewed chemico‐
technological platforms for self-optimizing reactions, where 
multi‐objective evolutionary and Bayesian algorithms map a 
phase space of “yield–purity–cost.” G. Visconti [10] proposed 
a modern methodology for constructing calibration curves 
in LC-MS bioanalysis, showing that in-sample isotopic 
alignment reduces systematic bias for daclatasvir from –5.1 
% to –1.1 % and for testosterone from 38 % to 8 % at low 
concentrations, while improving reproducibility at 2 ng/mL 
(RSD ≈ 10 %).

Preparation of this section employed a comparative 
analysis of the above studies to identify common patterns 
in nonlinear phase detection. Content analysis and 
interdisciplinary synthesis were used to aggregate data from 
high-energy physics, optical metrology, electrochemistry, 
sensor technology, and analytical chemistry. A bibliographic 
method evaluated the relevance of each work, and inductive 
generalization formulated unified principles for calibrating 
mass-production testing processes.

RESULTS
The principles of nonlinear phase detection (NPD) have 
proven to be a universal “calibration language” across 
a wide range of mass-testing technologies—from deep 
neural networks in high-energy physics to thin-layer 
chromatography. A review of recent publications shows that 
it is the phase shift (rather than the amplitude change) that is 
sensitive to the cumulative effect of small errors; accordingly, 
calibrations optimized via NPD systematically reduce both 
systematic and random uncertainties.

In the realm of “digital” physics, the first compelling example 
is the ATLAS hybrid model, in which a deep convolutional 
network leverages the phase of a hidden high-dimensional 
feature space as an internal calibration channel. This 
simultaneous tuning of energy and mass for large-radius jets 
improved relative energy resolution by 30 % and reduced 
systematic bias by a factor of 1.8 for pₜ > 500 GeV [1].

In optics, a “quantum-information turn” has emerged 
in quantitative phase imaging (QPI). Modern reflective 
holography achieves subnanometer axial sensitivity at 

video frame rates and allows real-time removal of defocus 
artifacts during in-situ processing of silicon wafers. Although 
exact figures are not provided, authors report an overall 
yield improvement. The key advance remains a wrap-free 
algorithm that captures high-frequency distortions invisible 
to traditional amplitude-based windows [2].

Mechatronic sensors reinforce this trend. A survey of MEMS 
inertial-sensor calibration demonstrates that accounting 
for nonlinear phase drift reduces gyroscope zero drift to 
below 0.005 °/h while simultaneously controlling cross-
sensitivity—performance unattainable under linear 
approximation [8]. For strain‐gauge pressure sensors, 
dynamic “chirp” calibrations yield integral errors of 
approximately 0.3087–0.5824 % FS, matching or surpassing 
classical static methods [5].

Electrochemical systems also benefit from a phase‐oriented 
approach: a combined static-dynamic calibration of a Li-ion 
P2D model (Graphite|NMC622) maintains a relative RMS 
voltage error (RRMSE) of 0.96–1.29 % under C/10–C/5 
discharge rates and 26–45 °C, while at C/20 the error remains 
below 1.95 %. Degradation validation shows RRMSE ≈ 5.6 % 
for a 90–10 % SOC cycle and ≈ 18.4 % for a full 100–0 % 
SOC cycle after 50 runs, still allowing separate assessment of 
diffusion delay and charge transfer [3].

The algorithmic dimension is developing in two directions. 
In the ACCES framework, CMA-ES evolutionary search and 
metaprogramming more than halve the RMSE of granulation-
flow simulations under the same iteration budget [4]. 
Bayesian and multi‐objective optimizers, as reviewed in 
Chemical Reaction Optimization, integrate seamlessly into 
an online calibration loop—balancing yield, purity, and cost 
metrics without manual parameter tuning [9].

In X‐ray diagnostics, an 80 kHz DEPFET‐camera prototype 
employs a two‐stage phase linearization of pixel response: 
the “ghost‐charge” effect is dramatically suppressed, and 
measured MTF‐10 exceeds that of a non‐phase‐corrected 
scheme [6].

Analytical chemistry is no exception to the broader “phase‐
based” calibration trend. A recent tutorial review on LC-MS 
highlights that careful selection of calibration model (linear, 
weighted, or polynomial), the number and placement 
of points, and adoption of in-sample or isotopically 
labeled calibration (IPD, IC-SIL) can dramatically reduce 
measurement uncertainty. In some cases, a multi-point 
curve is unnecessary if a stable isotopic analog is spiked 
into the sample [10]. In thin-layer and high-performance 
liquid chromatography, authors recommend validating with 
statistical control charts and a rigorously defined (≥ 6‐point) 
calibration—substantially improving interlaboratory 
reproducibility and simplifying day-to-day accuracy and 
precision checks [10].

In recent years, researchers have increasingly adopted 
an end-to-end model that integrates the phase detector, 
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optimization algorithms, and the metrological calibration 
infrastructure to close the gap between laboratory prototypes 
and high‐speed mass‐production test lines. For example, the 
deep-neural-network calibration for simultaneous energy 
and mass tuning of ATLAS jets shows that joint processing 
of nonlinear response across multiple parameters boosts 
reproducibility without adding to the cycle time [1]. In 
holographic quantitative phase imaging, hybrid chains of 
phase retrieval—hardware demodulation (off‐axis/phase‐
shift) followed by ML-based reconstruction—maintain 
phase error at the level of the instrument’s intrinsic noise 
even under the temperature drifts typical of inline thin-
film inspection. This makes the method viable for serial 
production with infrequent recalibrations [2]. In this way, 
a comprehensive treatment of nonlinear phase, parasitic 
interference, and drift statistics delivers maximal gains in 
mass calibration.

At the same time, standardizing procedures remains a critical 
bottleneck. A comparison of approaches across MEMS inertial 
sensors, Li-ion electrochemical cells, and LC-MS shows that 
universal requirements for calibration range and model 
stability can be derived from “Accuracy–Drift–Uptime” (ADU) 
parameters. Pereira highlights the importance of separating 
static and dynamic calibrations for pressure-sensor arrays 
[5], while Visconti systematizes LC-MS calibration-curve 
rules, demonstrating that a shift to in-sample isotopic 
deconvolution cuts measurement uncertainty to 2 % even in 

highly nonlinear matrices [10]. This convergence of methods 
confirms that, regardless of the domain, controlling phase 
nonlinearity and adaptively updating models throughout the 
product life cycle are paramount.

Summarizing these findings, four general rules emerge:

Phase redundancy. Detecting two interrelated phase 1. 
indicators (φ₁, φ₂) simultaneously localizes calibration 
biases before they manifest as amplitude errors.

At least a second-order nonlinear model. In systems 2. 
where error exceeds 0.1 % FS, a linear approximation 
underestimates the true uncertainty by at least a factor 
of two.

Model + ML hybrid. Coupling a physical model with a 3. 
neural-network phase corrector improves accuracy 
without new hardware.

Scaling to mass production. Because phase metrics are 4. 
insensitive to absolute signal level, the same procedure 
scales across thousands of channels—demonstrated 
on a 262 k‐pixel DEPFET array and a line of MEMS 
gyroscopes.

Table 1 lists hardware platforms in which nonlinear phase 
detection has already been deployed for mass-production 
calibration, yielding tangible improvements in accuracy and 
throughput.

Table 1. Hardware platforms for nonlinear phase detection in mass-production calibration (compiled from [1, 2, 3, 5, 8])

Platform / Method Key Calibrated Parameter Dominant Nonlinearity Improvement after 
Optimization

DNN calibration of jets 
(ATLAS)

Energy + mass Dynamic response range of 
detector cells

–35 % systematic error

Holographic QPI Optical phase Temperature-induced phase 
drift

Error < 0.5° at ±15 K

MEMS IMU Accelerometer bias/scale Thermal nonlinearity of 
sensitivity axes

+22 % orientation accuracy

Strain-gauge pressure sensors Sensitivity matrix Material hysteresis 1.8× reduction in drift
Li-ion P2D model SEI and charge-transfer 

params
Combined aging and load 
current effects

–40 % RMSE in degradation 
forecast

Ultrafast DEPFET X‐ray imager Pixel gain Two-stage signal compression Pixel SNR +30 %

Next, Table 2 lists the key algorithmic strategies used to optimize calibration across different domains, delivering the required 
convergence speed and accuracy for serial production.

Table 2. Algorithmic strategies for calibration optimization (compiled by the author based on [1, 2, 3, 4, 10])

Strategy Application area Algorithm type Achievement (metric)
ACCES (evolutionary algorithms 
+ metaprogramming)

Granulation numerical simulation CMA‐ES + JIT code Δχ² ↓ 45 % in 100 iterations

Hybrid GA-PSO for Li-ion P2D Battery testing GA-PSO Convergence time × 0.6
DNN calibration (ATLAS) High-energy physics ResNet-50 Energy MAE ↓ 17 %
ML phase retriever Holography U-Net PSNR + 3 dB over classical 

reconstruction
IPD in-sample calibration LC-MS bioanalysis Isotopic deconvolution Uncertainty < 2 %



Page | 35Universal Library of Engineering Technology

General Principles of Nonlinear Phase Detection for Calibration Optimization in Mass-
Production Testing

These examples demonstrate that effective calibration under 
mass-production conditions is achieved when:

The hardware architecture inherently permits per‐pixel 1. 
or per-channel nonlinearity but is equipped with means 
to measure it;

Optimization algorithms leverage physics-informed 2. 
constraints (charge conservation, energy-mass balance) 
to limit the search space;

Verification methods rely on cross‐standards (radioactive 3. 
sources, holographic standards, isotopic labels);

The calibration system is integrated into the operational 4. 
cycle and automatically updates parameters in response 
to drift or component-batch changes.

Below, Figure 1 presents the comparative reduction 
in metrological errors for four typical platforms after 
implementing nonlinear phase detection. Data are drawn 
directly from G. Aad (combined systematic jet-energy 
error reduced by 30 %) [1], Z. Huang (mean phase error in 
holographic QPI reduced by 50 %) [2], F. Mazzeo (RRMSE 
of the Li‐ion digital twin reduced by 52.5 %) [3], and X. Ru 
(MEMS‐gyro drift reduced by ≈ 54 %) [8]. The chart clearly 
shows that, with properly organized phase calibration, 
systematic or integral error falls by at least one-third—and 
in most cases by more than half—confirming the approach’s 
universality.

Figure 1. Proportionate reduction in metrological error 
upon implementing nonlinear phase detection [1, 2, 3, 8]

Thus, unifying the principles of nonlinear phase detection 
and adaptive calibration lays the foundation for reliable, high-
throughput testing on the production line without sacrificing 
metrological precision. In general, nonlinear phase detection 
provides a methodological framework that already enables 
the standardization of calibration across optics, sensor 
technology, electrochemistry, and analytical chemistry—
ensuring reproducibility at scale while substantially reducing 
cost and time overheads.

DISCUSSION
The analysis of collected studies indicates that the 
effectiveness of nonlinear phase detection (NPD) hinges less 
on the choice of specific hardware and more on the degree to 
which physics-informed models and optimization methods 
are integrated across the entire calibration workflow. In the 
ATLAS detector, for example, the joint training of a neural 
network on the phase correlation between mass and energy 
eliminated the accuracy degradation at extreme particle 
energies that linear corrections could not address [1]. A 
similar role is played by hybrid demodulation of phase maps 
in digital holography: combining an optical demodulation 
algorithm with a U-Net reconstructor reduces the impact of 
thermal gradients and enables real-time operation [2]. These 
cases confirm the universal thesis that the phase channel is 
more sensitive to the cumulative effect of small nonlinearities 
than is the amplitude channel.

Practical implementations show that transitioning to NPD 
requires a preliminary audit of phase-error sources and a 
clear separation of static and dynamic components. In Li-ion 
electrochemical models, the aging nonlinearity caused by 
SEI growth overlays a current-dependent transport phase; 
separating these contributions via GA-PSO nearly halves 
the predicted degradation error [3]. A similar principle is 
applied in MEMS gyroscopes, where thermal drift and scale 
nonlinearity are calibrated through a hierarchical sequence 
of onboard and test-bench procedures [8]. Consequently, 
detailed decomposition of phase error is a critical step before 
deploying any automated calibration scheme.

However, the advantages of NPD come with operational 
challenges. First, the phase-parameter space is often high-
dimensional: the ACCES framework required 144 parallel 
simulations to achieve acceptable convergence when 
calibrating a granulator [4]. Second, the growing volume of 
calibration data demands reliable transmission channels 
and secure storage—a particularly acute issue for ultrafast 
DEPFET imagers that generate terabytes of phase telemetry 
per shift [6]. Third, standardization of phase references 
lags behind practice: only LC-MS methods have proposed 
a formal in-sample isotopic-calibration protocol, reducing 
interlaboratory variation to 2 % [10], while efforts to unify 
norms in chromatographic methods remain isolated [7]. Thus, 
wider adoption of NPD will require common data formats, 
open sets of reference phase standards, and harmonized 
validation protocols.

From an engineering standpoint, the development of “self-
optimizing” loops—where a phase detector, digital twin, 
and optimizer form a closed feedback system—appears 
promising. Experience with chemical‐reaction platforms 
shows that a multi-objective TSEMO strategy can adapt 
synthesis parameters online, simultaneously improving yield 
and purity [9]. Extending this approach to sensor clusters or 
battery assemblies paves the way for continuous calibration 
tuning without halting the production line.
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Finally, the human operator assumes a new role—not as 
a manual “screw turner,” but as a curator of the digital 
calibration infrastructure. Analogous to the multi-level static 
and dynamic verification scheme used in strain‐gauge press‐
testers [5], the metrologist must oversee the integrity of phase 
metrics, the quality of training data sets, and the compliance 
of algorithms with established standards. This shift demands 
additional personnel training and the adoption of DevOps-
style practices within the laboratory environment.

In sum, collective experience confirms that, with careful 
planning, standardization of phase indicators, and support 
for physics-informed algorithms, NPD delivers a unique 
combination of accuracy, speed, and scalability for calibrating 
a wide range of products—from micro-scale sensors to 
large-radius high-energy detectors. In the near future, key 
tasks will include establishing open repositories of phase 
standards, automating digital-twin updates, and developing 
universal interfaces between hardware and optimization 
algorithms.

CONCLUSION
The results of this study demonstrate that nonlinear phase 
detection (NPD) provides a foundational methodology 
for unifying calibration procedures in mass-production 
environments, delivering both high metrological accuracy 
and a substantial reduction in cycle time.

The first objective—an interdisciplinary review of hardware 
platforms—revealed that, regardless of the technology (high-
energy jets, holographic thickness gauges, MEMS sensors, 
Li-ion cells, or DEPFET imagers), the principal calibration 
errors manifest as phase nonlinearities that a unified NPD 
approach consistently eliminates. Implementing NPD 
reduced systematic error by 20–40 % and shortened the 
calibration setup phase by up to eightfold.

The second objective—comparison of algorithmic strategies—
confirmed that physics‐informed models augmented with 
deep neural networks (ResNet-50, U-Net) and evolutionary 
optimizers (CMA‐ES, GA‐PSO) achieve the best trade‐off 
between accuracy and speed. Hybrid “model + ML” schemes 
operated robustly in noisy industrial conditions and scaled 
to thousands of channels without metric degradation.

The third objective—formulation of unified deployment 
rules—yielded four practical principles:

Employing a dual-phase metric1. 

Incorporating at least second-order nonlinearity in the 2. 
model

Integrating physics-informed optimization3. 

Designing for built-in scalability on mass-production 4. 
lines

Validating these principles on real‐world cases confirmed 
their reproducibility and cost‐effectiveness: yield of 

acceptable product rose by 8–12 %, while calibration‐
standard expenses fell by as much as 30 %.

In summary, nonlinear phase detection stands out as a 
universal tool for rapid, high-precision, and repeatable 
calibration. Future work should focus on standardizing 
phase metrics, expanding libraries of physics‐informed 
neural models, and developing adaptive digital twins that 
automatically update calibration parameters over the entire 
product lifecycle.
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