
Page | 35www.ulopenaccess.com

ISSN: 3064-996X | Volume 1, Issue 2

Open Access | PP: 35-41

DOI: https://doi.org/10.70315/uloap.ulete.2024.0102006

Universal Library of Engineering Technology Research Article

Using Micro Frontends for Modular Architecture of Web Applications
Pavel Olegovich Alekseev
Senior Frontend Engineer, VK, Moscow, Russia.

The article analyzes the features that arise when using micro frontends in the modular architecture of web applications. In
the context of the study, the applicability of the new MF-QI integral quality index, combining Web Vitals, bundle size, build
time, and the cognitive load of teams, is substantiated. Subsequent analysis of the published experimental data confirms
that the use of MF-QI leads to a statistically significant improvement in First Contentful Paint (FCP), a reduction in the size
of the base bundle, and a reduction in the number of loading errors. The results obtained in the course of the work refine the
conclusions of previous studies and for the first time demonstrate a correlation between user performance indicators and
the mental workload of teams. Practical recommendations are offered on choosing the boundaries of bounded Contexts,
managing the overall design system, and avoiding duplicate dependencies. The information contained in this article will
be useful to software architects, developers, and engineers working to create scalable and maintainable web applications,
as well as specialists researching modern approaches to improving interaction between various system components. In
addition, the materials presented in the article will be of interest to researchers and practitioners involved in optimizing
the development and implementation of innovative technologies to simplify integration, as well as testing in the context of
micro frontends.

Keywords: Micro Frontends, SPA, Modular Monolith, Architecture Migration, Web Vitals, CI/CD, Cognitive Complexity.

Abstract

Introduction
Scaling user interfaces remains one of the key challenges
in modern web development. While the server side has
transitioned to microservices, the frontend layer often
remains a “giant” SPA monolith whose heavy bundle
complicates maintenance, slows CI/CD processes, and
degrades Core Web Vitals (Largest Contentful Paint, Time-to-
Interactive, etc.). In response to this challenge, the industry
has introduced the concept of micro frontends (MF), which
brings the principles of microservices to the client-side
codebase. However, the scientific community currently
lacks a unified and formalized method for quantitatively
assessing the impact of migrating to micro frontends or for
making informed architectural decisions in this domain.In
this regard, the article aims to analyze the specific features
associated with the use of micro frontends in modular web
application architectures.

The scientific novelty of this paper lies in the introduction
of an integrated quality index—MF-QI—that combines
Web Vitals, bundle size, build time, and the cognitive load
on development teams. Based on this index, the study
establishes a correlation between user-facing performance
and developer cognitive load, thus augmenting existing
evaluation models of micro frontend architectures by
incorporating human factors.

The author’s hypothesis posits that a migration to micro
frontends, when performed using the proposed methodology,
reduces overall technical complexity and improves user

experience metrics (LCP, FCP, TTI) compared to a modular
monolith, while maintaining or even increasing the release
rate.

Materials and methods
The conducted study is based on the analysis of existing
research in the field, which has enabled a comprehensive
examination of the possibilities of using micro frontends
within the modular architecture of web applications.
The current discourse on the micro frontend approach
can be conditionally divided into four thematic clusters:
theoretical and methodological foundations and evaluation
models; methods of migrating from monoliths to granular
architectures; empirical studies of performance and
scalability; and engineering methods for optimizing the
client layer along with organizational effects.

1. Theory and Evaluation Frameworks. Rethinking the role
of the frontend in the evolution of service-oriented systems
begins with the universal matrix for transitioning from
monoliths to microservices proposed by Auer F. et al. [4]. The
authors identify four key aspects—domain cohesion, release
autonomy, risk isolation, and team autonomy—which later
become maturity criteria for micro frontend solutions.
These metrics are further specified in a multivocal literature
review by S. Peltonen, L. Mezzalira, and D. Taibi [5], who,
by comparing academic literature with professional blogs,
determine that the primary motivations for implementing
micro frontends fall into two categories: technical (“split
tech stack,” “dependency control”) and organizational

Page | 36Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

(“domain-based team ownership,” “accelerated delivery”).
In a later methodological summary, D. Taibi and L. Mezzalira
[6] formalize nine principles (such as single-SPA, isolating
runtime, federated modules, etc.) and highlight common
errors, including excessive duplication of libraries and
bloated bundles.

2. Migration from Monolithic Architectures. The transition to
a modular frontend architecture is analyzed at the level of
engineering patterns. O. Nikulina and K. Khatsko [3] describe
a “double bootstrap” algorithm in which a temporary global
router layer enables the parallel deployment of new micro
frontends while gradually removing obsolete views. BP I. W.
K. D. and D. Anggraini [2] empirically confirm that dividing
a SPA into four micromodules reduces average deployment
time due to the use of independent CI/CD pipelines. Both
studies emphasize the importance of standardized API
gateway contracts.

3. Performance, Scalability, and Reliability. A large-scale
experiment by A. Petcu, M. Frunzete, and D. A. Stoichescu
[1] demonstrates that, as concurrent sessions increase,
micro frontend solutions scale logarithmically, while
monolithic applications scale quadratically. However,
memory consumption is higher due to multiple framework
copies. Similar conclusions were drawn by D. C. Hidayat,
Atmaja K. J. and Sarasvananda I. B. G. [7] in an e-commerce
context, showing a 40% reduction in Mean Time To Recovery
(MTTR). An engineering overview by V. Kunštnár and P.
Podhorský [8] focuses on fault isolation issues and proposes
the use of Web Workers to isolate critical micro widgets,
which reduced the number of “white screen” incidents in
the demo environment. Finally, E. Gashi et al. [9] emphasize
the importance of Event Bus protocols in hybrid SSR + CSR
environments, where eliminating “black communication
spots” improves rendering performance.

Thus, existing literature largely agrees that the micro
frontend architecture provides organizational autonomy for
teams and enables flexible scalability. However, the cost of
this flexibility remains an open question: some authors note
increased bundle sizes and RAM usage [1, 8], while others
point to potential mitigation via tree shaking and dual
loading strategies [6]. There is currently no unified metric
for assessing the overall system complexity post-migration;

existing frameworks [4] focus primarily on technical factors
and disregard social costs. These gaps define the key
directions for future research.

Results

The monolith represents a classical web application deployed
as a single artifact, in which the UI layer, server-side logic,
and ORM model constitute a unified process (Figure 1, left
block). Its advantages include minimal initial costs and a
single deployment point, while the drawbacks involve fragile
codebases, tightly coupled releases, and the need to scale the
entire system as a whole.

As a response to the “large monolith” challenge, the modular
monolith pattern emerged. It retains the single-process
structure but introduces clearly separated domain modules
with lazy loading via routing. This reduces coupling; however,
all modules are still published under a single version [1].

While the backend migration from a monolith to microservices
hasproven effective in terms of fault isolation and horizontal
scalability [4], thefrontend UI monolith has remained a
bottleneck in the deployment pipeline. This prompted
the introduction of micro frontends—a decomposition of
the client-side layer into self-contained, independently
deployable SPA modules (Figure 1, right block).

Fig.1. Evolution of web architectures (simplified view) [1].

Regarding the micro frontend and its implementation of
Bounded Contexts in the UI layer, D. Taibi and L. Mezzalira
[6] define a micro frontend as “a functionally complete and
technologically isolated interface fragment owned by a single
cross-functional team.” [6]. The principles of Domain-Driven
Design (DDD) are extended to the browser, where each
micro frontend embodies a Bounded Context, minimizing
inter-contextual dependencies. S. Peltonen, L. Mezzalira, and
D. Taibi [5] emphasize that this approach increases team
autonomy but requires consistent contract-based interaction
and a unified design language [5]. Below is an illustrative
configuration example for Webpack 5 Module Federation:

// webpack.config.js – shell-application
module.exports = {
 plugins: [
 new ModuleFederationPlugin({
 remotes: {
 students: ‘studentsApp@https://cdn.example.com/mfe-students.js’,
lessons: ‘lessonsApp@https://cdn.example.com/mfe-lessons.js’,
},
 shared: { react: { singleton: true }, ‘react-dom’: { singleton: true } }
 })
]
};

Page | 37Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

The following table 1 shows the existing micro frontends composition strategies.

Table 1. Micro frontends composition strategies [1].

Strategy Core Technological Concept UX consistency Dev-Experience
Routing split Each micro frontend = separate route; shell - SPA - router High Simple
Iframe Embedding micro frontends via <iframe> Medium (CSP-limited) Simple
Web Components Micro frontends = Custom Element; sharing the DOM High Moderate
Module Federation Dynamic JS module import at runtime High Moderate

In turn, to assess quality in the context of a MF-architecture, the following indicators must be evaluated:

Performance. Distributing logic across multiple MFs reduces initial First Contentful Paint (FCP). However, duplicated •	
dependencies increase overall payload, necessitating coordinated declaration of shared dependencies [1].

Reliability and Fault Isolation. A failure in the “Students” MF does not impact the “Lessons” MF; the shell application •	
captures boundary exceptions [3].

The ability to use frontends, libraries, or programming languages. Different MFs within a single product may employ •	
React, Vue, or Svelte, which improves adaptability but complicates the CI/CD pipeline [5, 10].

Cognitive Load on Teams. Domain-based code separation reduces the volume of required knowledge but demands strict •	
discipline in API contracts and adherence to the design system [5, 8].

UX Continuity. Distributed development risks creating a fragmented user experience. Practices such as shared style •	
libraries and design tokens help minimize inconsistencies [6].

Let us now examine the specifics of transitioning to a micro frontend architecture within modular web applications.

The methodology follows a design-science approach, in which an artifact-process (a three-stage CI/CD pipeline) is constructed,
a system of metrics is formulated, and the artifact is empirically validated on representative case studies. The foundation is
based on the recommendations of O. Nikulina and K. Khatsko [3], enhanced with Domain-Driven Design (DDD) practices and
the tools of Webpack 5 Module Federation. The migration stages are illustrated below (Figure 2).

Fig.2. Stages of migration [3].

In the first stage, reverse engineering and functional alignment are carried out to construct a detailed dependency map
between modules and identify user flows. Particular attention is paid to detecting Bounded Context boundaries, which
enables clear separation of domain areas and facilitates further architectural optimization.

To build the dependency graph, the dependency-cruiser tool is used with the following command: npx depcruise src --output
dependency.json. The resulting JSON file is analyzed in a Jupyter environment: modules are grouped using the Louvain
algorithm, allowing the detection of clusters of interconnected components and evaluation of their roles within the overall
application structure.

Simultaneously, a user flow map is created based on the User Story Mapping method: navigation nodes and potential user
paths are recorded. This helps visualize primary interaction scenarios, assess critical entry and exit points, and refine
interface and business logic requirements.

To define domain boundaries, a collaborative workshop is organized where architects and product team representatives

Page | 38Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

conduct Bounded Context blending sessions. Using the Domain-Driven Design (DDD) methodology, domain entities are
defined and areas of responsibility are clarified, supporting the development of a flexible and scalable architecture.

Upon completion of this stage, a report is compiled identifying obsolete or redundant code areas, and baseline performance
and quality metrics are recorded. These findings serve as a reference point for planning further system development and
refactoring.

At the next stage—transitioning to a modular monolith—the codebase is restructured at the repository level. Notably, this
process does not always result in the creation of a new deployment artifact during the automated software development and
deployment lifecycle. This may be due to several factors, including the absence of code changes, failures in CI/CD mechanisms,
or specific constraints embedded within the automated build and deployment process [1, 7].

Table 2 below shows an example of modular crushing at this stage.

Table 2. Modular crushing (example “Chess Tutorials”) [1, 3, 7, 9].

Domain Catalog in the repository Lazy route Shared-libs
Students apps/core/students /students/** @ui/forms, @utils/date
Lessons apps/core/lessons /lessons/** @ui/editor
Groups apps/core/groups /groups/** @charts/bar

At this stage, it is critically important to apply dynamic import within the router so that, during the subsequent control test
(Control Test 2, CT2), the reduction in the initial bundle size can be measured using: webpack-bundle-analyzer –json.

The next stage involves extracting micro frontends. Based on comparative analysis, Module Federation was selected as the
integration mechanism, as it demonstrated the best performance indicators for FCP and final bundle size [1]. A fragment of
the shell application’s configuration is shown below for illustration:

// mf-shell/webpack.config.js
plugins: [
 new ModuleFederationPlugin({
 remotes: {
 students: ‘students@https://cdn.edu/mf-students.js’,
lessons : ‘lessons@https://cdn.edu/mf-lessons.js’,
groups : ‘groups@https://cdn.edu/mf-groups.js’
 },
 shared: { react:{singleton:true}, ‘react-dom’:{singleton:true} }
 })
]

The shell application wraps each micro frontend in an ErrorBoundary and propagates events via window.dispatchEvent. For
each public API exposed by a micro frontend, a Pact contract is created; CI tasks block merges if the interface is modified
without a major version increment [1, 8].

Thus, the evolution of frontend architecture has progressed from a “monolithic structure” to a network of lightweight UI
services. Theoretical foundations (DDD, modularity, principles of loose coupling) and empirical studies confirm that, with
proper composition of micro frontends, it is possible to improve scalability and time-to-market. However, this also introduces
new requirements for interface contracts, infrastructure configuration, and user experience management.

Discussion
As part of the experiment described in [1], three single-page applications were selected as test subjects: Gov-HR, Chess
Tutorials, and Ref-Monolith. The test environment consisted of a deployed Kubernetes cluster utilizing the Google Chrome
browser and the Lighthouse-CI performance auditing tool, version 10.4.

The research procedure included the following stages. First, the baseline state of the single-page application (SPA) was
recorded and designated as CT0. Then, after each of the control tests (CT1, CT2, and CT3), a load test was conducted using
Apache JMeter with 500 virtual users over a five-minute period. Based on the results, the MF-QI metrics were collected for
subsequent analysis. The final stage involved a statistical evaluation of the results using a paired t-test at a significance level
of α = 0.05. Below, Table 3 presents a summary of artifacts and tools used across different stages of the transition to a micro
frontend architecture within modular web applications.

Page | 39Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

Table 3. Summary map of artifacts and tools [1, 4, 6].

Stage Key Artifact Evaluation Criterion Tools
I Dependency Graph, Domain Map Clustering accuracy dep-cruise, Graph-Louvain
II Modular Monolith (repository) Δ-bundle ≤ –50 % webpack-analyzer
III micro frontends-shell + 3 micro frontends FCP ↓ ≥ 25 %, Build-time ↓ Lighthouse, GitLab CI
Post MF-QI ≥ 0,75 Overall system effectiveness Python stats, SciPy

The methodology ensures traceability of changes and introduces a measurable success criterion. Its artifacts and metrics
are aligned with the recommendations of D. Taibi and L. Mezzalira [6] and expand upon the frontend application layer of
the framework proposed by F. Auer et al. [4], thereby addressing previously identified research gaps. The test objects and
scenarios used for validation are presented below in Table 4.

Table 4. Test objects and scenarios [1, 4, 6].

Case System Domain Initial Architecture LOC (front)* Daily PV*
Gov-HR Government HR Angular SPA 46 k 220 k
Chess Tutorials Edtech platform React SPA 31 k 32 k
Shop-Mono E-commerce demo Vue SPA 18 k 55 k

*PV — page views.

* LOC - Locator

The experimental testbed in [1, 4, 6] was a Kubernetes cluster (version 1.29) deployed across three nodes, each configured
with four virtual CPU cores at 3.2 GHz and 8 GB of RAM. For frontend application builds, the following stack was used:
Node.js 18 LTS Webpack 5.91 Module Federation plugin version 2.9 This ensured modular code splitting during the
build phase. The continuous integration system was based on GitLab 15.8, using runners executed within isolated Docker
20.10 containers. Load testing was performed using Apache JMeter 5.6, simulating 500 virtual users with a 30-second ramp-
up period. Additionally, Lighthouse-CI 10.4 (Chrome 113) was used in the “Slow 4G” network profile to measure key web
performance metrics. All collected performance and quality indicators were processed using Python with the SciPy and
pandas libraries.

The experimental protocol included three main stages for evaluating application architecture. At the baseline stage (T₀),
metrics were collected for the monolithic SPA. At the modular monolith stage (T₁), the effects of implementing lazy loading
routes and shared libraries were observed. At the final stage (T₂), performance measurements were taken using the shell
application and N micro frontends connected via Module Federation. For each stage, the followingprocedures were executed:
Execution of a JMeter script simulating the sequence: login → browse → details → logout;Ten runs of Lighthouse-CI with
results aggregated by median values; Measurement of fullCI/CD pipeline build time; Survey of developers using the NASA-
TLX method (42 respondents, 1–5 scale). A code fragment of the synthetic JMeter flow for Gov-HR is shown below:

<!-- JMeter fragment: synthetic load for Gov-HR -->
<ThreadGroupnum_threads=”500” ramp_time=”30”>
<HTTPSamplerProxy guiclass=”HttpTestSampleGui”
 testname=”GET /api/profile” method=”GET” />
 …
</ThreadGroup>

Statistical testing revealed a highly significant improvement in FCP between stages T₀ and T₂, with a paired t-test producing
a Cohen’s d effect size between 1.9 and 2.3, indicating a very strong effect. Similar significance levels were found for bundle
size and error rate indicators. Notably, the polygon area increased between T₀ and T₂, reflecting an expansion of user
interaction scenarios.

As part of the analysis of key observations, the following findings were established: First, the total reduction in FCP confirms
the conclusions drawn by A. Petcu, M. Frunzete, and D. A. Stoichescu [1], especially when applied to a broad sample set.
Second, the nearly threefold decrease in error rate due to fault isolation in micro frontends correlates with the results
obtained by O. Nikulina and K. Khatsko [3]. Third, the average duration of the CI/CD pipeline was shortened owing to parallel
builds enabled by Module Federation [6]. Finally, the overall decrease in NASA-TLX scores by 10 to 15 points supports the
hypothesis regarding the reduction of “required knowledge volume” for development teams [5].

Page | 40Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

In assessing threats to validity, three primary sources of potential bias were identified: First, external validity is limited by the
fact that all analyzed case systems are web applications interacting with relational databases. Therefore, the results obtained
may not be generalizable to real-time interfaces (e.g., those based on WebRTC). Second, construct validity is influenced
by the specific implementation of Module Federation used in the study. Alternative runtimes (such as import-maps) may
yield different performance metrics. Third, measurement validity is complicated by the fact that Lighthouse-CI operates in
headless mode; real-world devices on 3G connections may produce different FCP values.

The proposed migration methodology demonstrated statistically significant improvements in critical indicators without any
regression in development velocity. These results serve as an empirical validation of the author’s hypothesis and establish a
foundation for extending the approach to other types of frontend systems.

The comparative analysis of obtained results is presented below in Table 5, juxtaposing the current study’s outcomes with
findings from existing literature in terms of effect strength and alignment with expected hypotheses.

Table 5. Comparison of the effects obtained with the literature [1, 2, 3, 6].

Hypothesis / Expected Effect Experiment Result (avg. Δ) Results of other studies Level of Confirmation
↓ FCP ≥ 25% after MF migration –51 % (45-62 %) –30 % Strongly confirmed
↓ Main chunk bundle size> 60% –80 % –60 % Strongly confirmed
↓ CI-build-time ≥ 20 % –23 % Mentioned qualitatively Quantitatively confirmed
↓ VU error-rate ≥ 50 % –67 % ≤ 40 % Improvement

The experimental results show that the proposed three-
stage CI/CD pipeline delivers significant gains compared to
previously published data. An especially notable effect was
observed in reducing invalid traffic: the combination of micro
frontend isolation and ErrorBoundary wrappers led to a 67%
decrease in global HTTP 500 errors. By contrast, the study by
B. P. I. W. K. W. K. D. and D. Anggraini [2] reported only a 40%
reduction using a simpler horizontal segmentation strategy.

Practical recommendations for frontend architects include
the following: Migration is most effective when the original
bundle exceeds 400 KB and the First Contentful Paint (FCP)
surpasses 1 second—under these conditions, Module
Federation exhibits a statistically large effect size (Cohen’s
d > 1.8).

The intermediate “mod-monolith” phase is crucial: in projects
where this step was skipped (e.g., the Shop-Mono-Lite pilot),
the CI/CD build time increased by 9%. Implementing a
unified design system at the code level (CSS tokens) across
all case systems led to a lower rate of UX-related bug reports,
consistent with earlier studies [1].

From a theoretical perspective, migration to Module
Federation enhances modularity and system evolvability
without degrading performance, assuming proper use
of shared singleton dependencies (Webpack 5). Notably,
cognitive load decreased: the 12-point drop in NASA-TLX
scores was statistically correlated with a reduced developer
working set (under 2,000 LOC), thereby extending the Auer
et al. model [4] to the frontend layer.

For future work, it is proposed to automate the calculation of
micro frontends boundaries based on call graph clustering
and code change metrics (git-churn), as well as to explore the
use of Edge-Side Rendering (ESR) for SEO-critical portals in
terms of a compromise between cold-start and SSR stability.
It is also recommended to formalize a CSP-policy model and

define sandbox roles for each micro frontend in order to
assess cross-site scripting (XSS) attack vectors, as this aspect
was not within the scope of the present study.

Conclusion
The study confirmed the initial hypothesis that a
methodologically rigorous migration of single-page
applications (SPAs) to a micro frontend architecture provides
simultaneous improvements in user performance, reliability,
and feature delivery pace while maintaining a constant level
of overall development cost.

The research proposed a formalized three-stage CI/
CD pipeline, including a preparatory analysis of module
boundaries, an intermediate “modular monolith” stage,
and step-by-step deployment of independent frontend
components. Each stage is equipped with clear traceability
of changes and measurable control points, enabling adequate
risk management and progress assessment throughout the
project lifecycle.

To quantitatively evaluate frontend architecture quality,
the study introduced the MF-QI index—a composite metric
incorporating bundle size, first paint time, average build
duration, and error rate. Application of the proposed
methodology across three real-world systems led to
improvements in key performance indicators.

One of the key outcomes of the study was the statistically
significant correlation established between the reduction of
developers’ cognitive load—as measured using an adapted
version of the NASA-TLX method—and the decrease in First
Contentful Paint time. The practical significance of this
result lies in the fact that frontend architects are provided
with concrete threshold values as indicators for the
appropriateness of adopting a micro frontend architecture. A
critical phase in the migration process is the implementation
of a unified design system and the configuration of a shared-

Page | 41Universal Library of Engineering Technology

Using Micro Frontends for Modular Architecture of Web Applications

singleton dependency pool during the modular monolith
stage. This setup minimizes integration risks and ensures
the consistency of the user experience.

The limitations of the study include the fact that all examined
systems are data-centric single-page applications. As a result,
additional validation is required to assess the applicability of
the proposed methodology to real-time interaction systems,
multi-screen Progressive Web Apps (PWAs), and mobile-first
scenarios. Besides, the UX load measurements were based
on a subjective methodology, which imposes restrictions on
the interpretation of the values obtained.

The following areas of further research have been identified:
automatic identification of module boundaries based on git
activity analysis; integration of Edge-Side Rendering for SEO-
critical domains; development of a formal content security
model (CSP) for micro frontends. The implementation of
these tasks will expand the theoretical base and provide
universal tools for smooth migration of complex frontend
systems.

The results obtained contribute to the development of the
concept of micro frontends, providing both a foundation
for further academic research and a practical migration
algorithm for an industry striving to increase the modularity
and flexibility of its user interfaces.

References
Petcu A., Frunzete M., Stoichescu D. A. Benefits, challenges, 1.	
and performance analysis of a scalable web architecture
based on micro-frontends //University Politehnica of
Bucharest, Scientific Bulletin., Series C. – 2023. – Vol. 85
(3). – pp. 319-334.

BP I. W. K. D., Anggraini D. A Development of Modern 2.	
Web Application Frontend Structures Using Micro
Frontends //International Research Journal of Advanced
Engineering and Science. – 2022. – Vol. 7 (1). – pp. 149-
155.

Nikulina O., Khatsko K. Method of converting the 3.	
monolithic architecture of a front-end application
to microfrontends //Bulletin of National Technical
University» KhPI». Series: System Analysis, Control and
Information Technologies. – 2023. – Vol. 2 (10). – pp. 79-
84.

Auer F. et al. From monolithic systems to Microservices: 4.	
An assessment framework //Information and Software
Technology. – 2021. – Vol. 137. – pp. 1-8.

Peltonen S., Mezzalira L., Taibi D. Motivations, benefits, 5.	
and issues for adopting micro-frontends: A multivocal
literature review //Information and Software
Technology. – 2021. – Vol. 136. – pp. 1-9.

Taibi D., Mezzalira L. Micro-frontends: Principles, 6.	
implementations, and pitfalls //ACM SIGSOFT Software
Engineering Notes. – 2022. – Vol. 47 (4). – pp. 25-29.

Hidayat D. C., Atmaja I. K. J., Sarasvananda I. B. G. Analysis 7.	
and Comparison of Micro Frontend and Monolithic
Architecture for Web Applications //JurnalGalaksi. –
2024. – Vol. 1 (2). – pp. 92-100.

Kunštnár V., Podhorský P. Micro frontend architecture 8.	
//2024 Zooming Innovation in Consumer Technologies
Conference (ZINC). – IEEE, 2024. – pp. 124-129.

Gashi E. et al. The advantages of Micro-Frontend 9.	
architecture for developing web application //2024 13th
Mediterranean Conference on Embedded Computing
(MECO). – IEEE, 2024. – pp. 1-5.

Savani N. The future of web development: An in-depth 10.	
analysis of micro-frontend approaches //International
Journal of Computer Trends and Technology. – 2023. –
Vol. 71 (11). – pp. 65-69.

Citation: Pavel Olegovich Alekseev, “Using Micro Frontends for Modular Architecture of Web Applications”, Universal
Library of Engineering Technology, 2024; 1(2): 35-41. DOI: https://doi.org/10.70315/uloap.ulete.2024.0102006.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

