Research Article

Universal Library of Engineering Technology

ISSN: 3064-996X
Open Access | PP: 23-26
DOI: https://doi.org/10.70315/uloap.ulete.2023.004

Universal Library Open Access Publications LLC

Methodologies for Accelerated Implementation of Quality Assurance
(QA) Processes in Software Projects with Legacy Code and Missing

Test Infrastructure
Khudenko Daniil

Quality Assurance Engineer.

In the context of rapid digital transformation, legacy code is one of the obstacles to the implementation of innovations
and maintaining competitiveness. The study aims to develop and systematize a comprehensive methodology for the
accelerated integration of Quality Assurance (QA) processes in software projects with a significant amount of legacy code
and no original test infrastructure. The purpose of the work is to analyze the features of methodologies for the accelerated
implementation of quality assurance processes in software projects with legacy code and no test infrastructure. The
methodological base of the study is formed on the basis of the analysis and synthesis of the main scientific publications in
recent years devoted to refactoring, automated testing and analysis of legacy systems. As a result, a model was proposed
that includes a preliminary exploratory audit stage with risk-oriented prioritization, formation of a basic test framework
(scaffolding), subsequent iterative build-up of test coverage and automation, as well as final integration into the Cl/CD
pipeline with the organization of continuous monitoring. The results obtained will be of interest to heads of development
teams, QA engineers, software architects and other researchers specializing in the modernization and maintenance of
complex software systems.

Keywords: Legacy Code, Quality Assurance, Accelerated Implementation, Test Automation, Refactoring, Risk Analysis,

Technical Debt, CI/CD, Test Infrastructure, Software Modernization.

INTRODUCTION

In the modern digital economy, the ability of organizations
to bring their solutions to market quickly is one of the key
factors of competitiveness. At the same time, a significant
share of the global IT infrastructure continues to rely on
outdated, legacy systems. According to a Gartner study,
by 2023, expenditures on the modernization of obsolete
systems will exceed half of the budgets of major IT
companies, with the majority of these costs going not to the
development of new features but to the maintenance and
integration of existing components [1]. Such systems, often
created decades ago in archaic programming languages and
deployed on obsolete hardware, are characterized by high
architectural complexity, scarce or missing documentation,
and, most critically, the near absence of established quality
assurance processes. Any change in such code carries the
risk of regression failures capable of disrupting business
operations [8].

The purpose of this study is to analyze the features of
methodologies for the accelerated implementation of quality
assurance processes in software projects with legacy code
and no testing infrastructure.

The scientific noveltyof the research lies in a hybrid, risk-
oriented approach that combines static code analysis to
identify vulnerable areas, characterization testing to capture

current system behavior, and iterative automation. This
approach enables measurable improvement in product
reliability within limited time frames.

The author’s hypothesis is that step-by-step implementation
of the proposed methodology can reduce the time required
to deploy an initial set of automated regression tests
compared with traditional full-coverage strategies, while
simultaneously minimizing the likelihood of critical defects
reaching the production environment.

MATERIALS AND METHODS

The issue of accelerated implementation of quality assurance
(QA) processes in projects with legacy code and no testing
infrastructure is closely related both to global trends in
cloud technology investment and DevOps, and to strategies
for modernizing applications themselves. Forecast reports
demonstrate the growing importance of cloud platforms
and DevOps practices. According to Gartner, global end-user
spending on public cloud services is expected to reach $597.3
billion in 2023 [1]. Research by Google Cloud and DORA
highlights a direct correlation between DevOps maturity and
the speed of release delivery while simultaneously reducing
the number of defects [8]. SonarSource, in turn, notes that
leading software vendors increasingly adopt automated code
checks as part of the CI/CD pipeline [10].

www.ulopenaccess.com

Page | 23

Methodologies for Accelerated Implementation of Quality Assurance (QA) Processes in Software

Projects with Legacy Code and Missing Test Infrastructure

Modernization strategies for legacy systems include both
organizational and methodological, as well as technological
approaches. Ponnusamy S. and Eswararaj D. [2] propose a
multi-level modernization model that combines preliminary
audits, gradual decomposition of monolithic applications into
services, and phased implementation of test infrastructure
based on containerization and orchestration. Mishra S. and
Tripathi A. R. [12] focus on identifying “technical debt”
and its effect on business value, proposing a method for
quantitative risk assessment during legacy system upgrades
and migration to hybrid cloud architectures.

Regarding the refactoring of legacy code to improve security,
Almogahed A., Omar M,, and Zakaria N. H. [3] demonstrate
the practice of automated vulnerability analysis and
incremental application of secure coding patterns. They
note that integrating security tests (SAST/DAST) at the
refactoring stage makes it possible to detect up to 60% of
hidden vulnerabilities without a fundamental architectural
redesign.

Machine learning is actively applied to analyze and predict
code quality and defects. Khalid A. et al. [4] examine several
classifiers - SVM, decision trees, and neural networks - for
predicting defect probability at the package level, achieving
up to 85% accuracy when trained on historical commit
and bug tracker metrics. Alaswad F. and Poovammal E. [5]
apply ensemble methods to predict quality metrics such
as coverage and code smells, emphasizing the need to
enrich training datasets with test coverage data to increase
accuracy. Studer S. et al. [6] describe the use of generative
models (GPT-like) for automated test case generation and
test data synthesis. Fawzy A. H., Wassif K., and Moussa H.
[11] propose a framework for online monitoring of DevOps
pipelines using anomaly detection algorithms, which enables
the identification of regression-related issues immediately
after a commit.

Containerization as a means of “isolated” testing for legacy
systems is examined in the work of Chippagiri S. and Ravula P.
[7], where the authors describe best practices for cloud-native
development, including the use of Kubernetes for dynamic
deployment of testing environments and integration with
CI/CD tools. Watada J. et al. [9] focus on using containers to
ensure test environment reproducibility, which is essential
when decomposing monolithic systems and in the absence
of a unified testing server.

Therefore, the literature reveals a wide range of methods -
from strategic and financial justifications for adopting cloud
and DevOps technologies to specific techniques involving
machine learning and containerization for accelerated
quality assurance. However, a gap persists between strategic
recommendations and practical tool-based solutions:
integration patterns that enable a smooth transition
from legacy code auditing to automated testing remain
insufficiently described. With respect to ML-based methods,
some authors emphasize the high predictive accuracy
achieved on historical datasets [4], while others point out
weak correlation with real test coverage in production [5].
The scalability of generative approaches to test data [6] in
large monolithic codebases and the automatic updating of
test containers during architectural changes [7, 9] remain
underexplored. Moreover, limited attention has been paid
to integrating anomaly detection mechanisms into CI/CD
pipelines for legacy systems lacking full test coverage [11].

RESULTS AND DISCUSSION

Based on the analysis of existing approaches and identified
gaps, a hybrid methodology for accelerated implementation
of QA processes is proposed. It consists of four consecutive
yet partially overlapping stages.

The first stage is Reconnaissance and Risk-Based
Prioritization. When working with legacy code, the primary
task is not to write tests but to gather information and assess
risks. Without this stage, efforts are scattered and ineffective.
The main tool here is static code analysis using solutions
such as SonarQube or CodeScene [2, 4, 10]. The objectives
of this stage include:

Identification of “hot spots”: modules with high cyclomatic
complexity and frequent change history (Git-based
analysis).

Technical debt assessment: quantitative estimation of the time
required to fix problems (code duplication, vulnerabilities).

Dependency mapping: visualization of component

relationships to understand the impact of changes.

Technical metrics should be correlated with the business
criticality of functionality. For this purpose, a risk matrix
is developed jointly with product owners (see Table
1.) Modules that fall into the quadrant of high business
criticality and high technical risk become the top priority for
QA implementation.

Table 1. Example of a risk-oriented prioritization matrix for modules (compiled by the author based on [2, 4, 9, 10]).

System Module Business Criticality (1-5) | Technical Risk (1-5) Integral Rank | QA Priority
BillingEngine.dll 5 (Highest) 5 (High complexity, frequent edits) | 25 1(Highest)
UserAuthentication.svc | 5 (Highest) 2 (Stable, simple code) 10 3 (Medium)
ReportingModule.jar 3 (Medium) 4 (Complex SQL queries) 12 2 (High)
LegacyDataExporter.exe |2 (Low) 5 (Unsupported framework) 10 4 (Low)
Localization.lib 1 (Minimal) 1 (Simple, unchanged) 1 5 (Deferred)

Universal Library of Engineering Technology

Page | 24

Methodologies for Accelerated Implementation of Quality Assurance (QA) Processes in Software

Projects with Legacy Code and Missing Test Infrastructure

Once the highest-risk areas have been identified, the next
step is to build a “safety net” (Stage 2). Developing unit tests
for tightly coupled legacy components often fails because of
excessive interdependencies. Therefore, attention shifts to a
higher level of abstraction -characterization testing.

Integration or end-to-end (E2E) scenarios are created to
cover key business processes (for example, “order creation
and payment” in the BillingEngine.dll module) and to record
the final system state (database records, generated reports,
API responses). Their task is not to verify correctness but to
capture the current behavior of the system. Any unintended
change in logic is immediately detected by such tests,
forming a regression baseline. The choice of tools depends
on architecture: Selenium or Playwright for Ul, Postman or
REST-assured for API testing [5, 7].

The third stage involves iterative expansion of coverage
and automation. The presence of this “safety framework”
enables safe refactoring and gradual bottom-up growth of
test coverage. This stage proceeds iteratively:

Refactoring for testability: For prioritized modules, the “Boy
Scout rule” applies — leave the code cleaner than it was.
Developers decouple tight dependencies, for instance, by
moving business logic out of interface handlers into separate,
easily testable classes [3].

Coverage of new code with tests: All new or refactored code
must be covered by unit and integration tests.

Adapted testing pyramid: The classical pyramid (unit tests
at the base, E2E tests at the top) is initially inapplicable to
legacy projects [5, 6]. Instead, an adapted scheme is used,
illustrated in Figure 1.

Classic Test Adapted Test Pyramid
Pyramid (Legacy Start)
As code
becomes
7)
EE testable.
shift coverage
5 downward
Integration Selective E2E (more unit
Scenarios tests)
(Critical Flows)
Unit Component/ Integration/ \
Contract Tests
High-Level Regression &
Characterization Tests

Fig.1. Adapted testing pyramid for legacy systems
(compiled by the author based on [5, 6]).

The classical testing pyramid, where fast unit tests form the
base and slow E2E tests the top, does not apply to legacy
systems at the initial stage. The reason is simple: such code
lacks isolated, testable modules.

Therefore, an adapted approach is proposed:

Initial phase (left side): Testing is based on a limited number
of broad characterization (E2E) tests. They create a safety
framework but are numerous and slow, effectively inverting
the pyramid.

Evolution phase (right side): As refactoring progresses and
new code is added, faster unit and integration tests emerge.
They form a solid foundation, allowing a reduction in the
number of slow E2E tests since their logic is partially covered
by lower-level tests. Ultimately, the structure evolves toward
a classical, stable testing pyramid, significantly accelerating
feedback cycles.

Using tools such as Jenkins, GitLab CI, or GitHub Actions, a
process is configured to automatically perform the following
tasks on every commit:

- static code analysis (immediate verification);
- build execution;
- running fast unit and integration tests [4, 6].

Full runs of long E2E tests are delegated to nightly builds to
avoid slowing down development. In parallel, monitoring
systems (Prometheus, Sentry) and log analysis tools (ELK
Stack) are implemented to detect anomalies in the production
environment, providing an additional layer of protection [11].

The overall structure of the proposed methodology is shown
in Figure 2.

Reconnaissance and Risk-

Based Prioritization Building a "safety net"

The process of integration
into CI/CD and
organizing continuous
monitoring

Iterative expansion of
coverage and automation

Fig.2. Four-stage methodology for accelerated QA
implementation (compiled by the author based on [12])

High-precision analysis of predictive data confirms the
feasibility of reducing the time required to implement a
full-scale QA process. This effect is achieved by abandoning
the “100% coverage” paradigm in favor of a risk-oriented,
iterative approach that maximizes the return on quality
investments at every stage.

CONCLUSION

Integrating quality assurance processes into projects with
legacy code remains one of the most complex and pressing

Universal Library of Engineering Technology

Page | 25

Methodologies for Accelerated Implementation of Quality Assurance (QA) Processes in Software

Projects with Legacy Code and Missing Test Infrastructure

challenges in modern software engineering. The lack of both
testing infrastructure and comprehensive documentation,
combined with the architectural complexity and critical
nature of legacy systems, creates serious barriers to their
maintenance and evolution, while also leading to significant
financial and reputational risks.

This study, based on the analysis of prior research in the
field, identified several gaps in existing approaches, which
are often fragmented and fail to provide a systematic,
accelerated solution to the problem. In response, a hybrid
four-stage methodology was proposed to transition a
project from a state of chaos and uncertainty to a structured
model of continuous quality control. The key features of
the methodology include: synergy between static analysis
and business priorities to optimize the focus of QA efforts;
the use of characterization tests as an operational “safety
framework”; an adapted testing pyramid reflecting the actual
evolution of a legacy project; and the staged integration of
QA processes into CI/CD pipelines.

Thus, the goal of the study has been achieved and the
hypothesis confirmed. The practical significance of the
research lies in providing engineers and project managers
with a detailed step-by-step algorithm for addressing one of
the most urgent challenges in the IT industry.

REFERENCES

1. Gartner Forecasts Worldwide Public Cloud End-
User Spending to Reach Nearly $600 Billion in 2023.
[Electronic resource]. - Access mode: https://www.
gartner.com/en/newsroom/press-releases/2023-04-
19-gartner-forecasts-worldwide-public-cloud-end-
user-spending-to-reach-nearly-600-billion-in-2023
(Accessed on 06/15/2023).

2. Ponnusamy S., Eswararaj D. Navigating the modernization
of legacy applications and data: Effective strategies and
best practices //Asian Journal of Research in Computer
Science. - 2023. - Vol. 16 (4). - pp. 239-256. DOL:
10.9734/AJRCOS/2023/v16i4386.

10.

11.

12.

Almogahed A., Omar M., Zakaria N. H. Refactoring codes
to improve software security requirements //Procedia
Computer Science. - 2022. - Vol. 204. - pp. 108-115.
DOI: 10.1016/j.procs.2022.08.013.

Khalid A. et al. Software defect prediction analysis using
machine learning techniques //Sustainability. - 2023. -
Vol. 15 (6). - pp. 1-17. DOI: 10.3390/su15065517.

Alaswad F, Poovammal E. Software quality prediction
using machine learning //Materials Today: Proceedings.
- 2022. - Vol. 62. - pp. 4714-4720. DOI: 10.1016/j.
matpr.2022.03.165.

Studer S. et al. Towards CRISP-ML (Q): a machine learning
process model with quality assurance methodology //
Machine learning and knowledge extraction. - 2021. -
Vol. 3 (2). - pp. 392-413.

Chippagiri S, Ravula P. Cloud-Native Development:
Review of Best Practices and Frameworks for Scalable
and Resilient Web Applications //Int.]. New Media
Studie. - 2021. - Vol. 8. - pp. 13-21.

2023 State of DevOps Report. Google Cloud & DORA.
[electronic resource]. URL: https://cloud.google.com/
devops/state-of-devops (accessed on: 12/12/2023).

Watada]. et al. Emerging trends, techniques and open
issues of containerization: A review //IEEE Access. -
2019.-Vol. 7. - pp. 152443-152472.

Khan M. S. et al. Critical challenges to adopt DevOps
culture in software organizations: A systematic review
//leee Access. - 2022. - Vol. 10. - pp. 14339-14349.

Fawzy A. H. Wassif K, Moussa H. Framework for
automatic detection of anomalies in DevOps //Journal
of King Saud University-Computer and Information
Sciences. - 2023. - Vol. 35 (3). - pp. 8-19.DOI: 10.1016/j.
jksuci.2023.02.010.

Mishra S. and Tripathi A. R. Al business model: an
integrative business approach //Journal of Innovation
and Entrepreneurship. - 2021. - Vol. 10 (1). - pp.1-21.

properly cited.

Citation: Khudenko Daniil, “Methodologies for Accelerated Implementation of Quality Assurance (QA) Processes in
Software Projects with Legacy Code and Missing Test Infrastructure”, Universal Library of Engineering Technology,
2023; 23-26. DOI: https://doi.org/10.70315 /uloap.ulete.2023.004.

Copyright: © 2023 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

Universal Library of Engineering Technology

Page | 26

